These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 33763714)
1. Hotspot analysis of spatial distribution of algae blooms in small and medium water bodies. Zabaleta B; Achkar M; Aubriot L Environ Monit Assess; 2021 Mar; 193(4):221. PubMed ID: 33763714 [TBL] [Abstract][Full Text] [Related]
2. Satellite assessment of eutrophication hot spots and algal blooms in small and medium-sized productive reservoirs in Uruguay's main drinking water basin. Zabaleta B; Aubriot L; Olano H; Achkar M Environ Sci Pollut Res Int; 2023 Mar; 30(15):43604-43618. PubMed ID: 36662428 [TBL] [Abstract][Full Text] [Related]
3. [Analysis on Diurnal Variation of Chlorophyll-a Concentration of Taihu Lake Based on Optical Classification with GOCI Data]. Bao Y; Tian QJ; Chen M; Lü CG Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Aug; 36(8):2562-7. PubMed ID: 30074364 [TBL] [Abstract][Full Text] [Related]
4. Multi-sensor satellite and in situ monitoring of phytoplankton development in a eutrophic-mesotrophic lake. Dörnhöfer K; Klinger P; Heege T; Oppelt N Sci Total Environ; 2018 Jan; 612():1200-1214. PubMed ID: 28892864 [TBL] [Abstract][Full Text] [Related]
5. [Quantitative remote sensing retrieval for algae in inland waters]. Song Y; Song XD; Jiang H; Guo ZB; Guo QH Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Apr; 30(4):1075-9. PubMed ID: 20545165 [TBL] [Abstract][Full Text] [Related]
6. A Study on Algae Bloom Pigment in the Eutrophic Lake Using Bio-Optical Modelling: Hyperspectral Remote Sensing Approach. Vishnu Prasanth BR; Sivakumar R; Ramaraj M Bull Environ Contam Toxicol; 2022 Dec; 109(6):962-968. PubMed ID: 35366066 [TBL] [Abstract][Full Text] [Related]
7. Ground-based remote sensing provides alternative to satellites for monitoring cyanobacteria in small lakes. Cook KV; Beyer JE; Xiao X; Hambright KD Water Res; 2023 Aug; 242():120076. PubMed ID: 37352675 [TBL] [Abstract][Full Text] [Related]
8. [Spatial distribution pattern and stock estimation of nutrients during bloom season in Lake Taihu]. Jin YW; Zhu GW; Xu H; Zhu MY Huan Jing Ke Xue; 2015 Mar; 36(3):936-45. PubMed ID: 25929061 [TBL] [Abstract][Full Text] [Related]
9. Quantifying national and regional cyanobacterial occurrence in US lakes using satellite remote sensing. Coffer MM; Schaeffer BA; Darling JA; Urquhart EA; Salls WB Ecol Indic; 2020 Apr; 111():105976. PubMed ID: 34326705 [TBL] [Abstract][Full Text] [Related]
10. Predicting water quality variability in a Mediterranean hypereutrophic monomictic reservoir using Sentinel 2 MSI: the importance of considering model functional form. Abbas M; Alameddine I Environ Monit Assess; 2023 Jul; 195(8):923. PubMed ID: 37410180 [TBL] [Abstract][Full Text] [Related]
11. Improving lake chlorophyll-a interpreting accuracy by combining spectral and texture features of remote sensing. Yang Y; Zhang X; Gao W; Zhang Y; Hou X Environ Sci Pollut Res Int; 2023 Jul; 30(35):83628-83642. PubMed ID: 37349490 [TBL] [Abstract][Full Text] [Related]
12. Multiplatform optical monitoring of eutrophication in temporally and spatially variable lakes. Vos RJ; Hakvoort JH; Jordans RW; Ibelings BW Sci Total Environ; 2003 Aug; 312(1-3):221-43. PubMed ID: 12873412 [TBL] [Abstract][Full Text] [Related]
13. [Remote sensing monitoring and pre-alarming of algal blooms in Taihu Lake]. Song Y; Song XD; Guo QH; Tang LN Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Mar; 31(3):753-7. PubMed ID: 21595233 [TBL] [Abstract][Full Text] [Related]
14. [Analysis of algae bloom and lake surface bright temperature in Chaohu Lake based on remote sensing data]. Zhang H; Huang Y; Li K Huan Jing Ke Xue; 2012 Oct; 33(10):3323-8. PubMed ID: 23233955 [TBL] [Abstract][Full Text] [Related]
15. Study on the applicability of FAI linear fitting model in the extraction of cyanobacterial blooms. Su T; Xu L; Liu X; Cui X; Lei B; Di J; Xie T Environ Monit Assess; 2024 Sep; 196(10):909. PubMed ID: 39249606 [TBL] [Abstract][Full Text] [Related]
16. Monitoring cyanoHABs and water quality in Laguna Lake (Philippines) with Sentinel-2 satellites during the 2020 Pacific typhoon season. Caballero I; Navarro G Sci Total Environ; 2021 Sep; 788():147700. PubMed ID: 34029825 [TBL] [Abstract][Full Text] [Related]
17. Monitoring trophic status using in situ data and Sentinel-2 MSI algorithm: lesson from Lake Malombe, Malawi. Makwinja R; Inagaki Y; Sagawa T; Obubu JP; Habineza E; Haaziyu W Environ Sci Pollut Res Int; 2023 Mar; 30(11):29755-29772. PubMed ID: 36418816 [TBL] [Abstract][Full Text] [Related]
18. Assessing the effectiveness of Landsat 8 chlorophyll a retrieval algorithms for regional freshwater monitoring. Boucher J; Weathers KC; Norouzi H; Steele B Ecol Appl; 2018 Jun; 28(4):1044-1054. PubMed ID: 29847690 [TBL] [Abstract][Full Text] [Related]
19. Trophic state in a tropical lake based on Chlorophyll-a profiler data and Sentinel-2 images: The onset of an algal bloom event. Pantoja DA; Vega-Álvarez NA; Gasca-Ortiz T Water Environ Res; 2021 Oct; 93(10):2185-2197. PubMed ID: 34018272 [TBL] [Abstract][Full Text] [Related]
20. Evaluating the portability of satellite derived chlorophyll-a algorithms for temperate inland lakes using airborne hyperspectral imagery and dense surface observations. Johansen R; Beck R; Nowosad J; Nietch C; Xu M; Shu S; Yang B; Liu H; Emery E; Reif M; Harwood J; Young J; Macke D; Martin M; Stillings G; Stumpf R; Su H Harmful Algae; 2018 Jun; 76():35-46. PubMed ID: 29887203 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]