These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 33764041)

  • 1. Monodisperse Selectively Permeable Hydrogel Capsules Made from Single Emulsion Drops.
    Steinacher M; Cont A; Du H; Persat A; Amstad E
    ACS Appl Mater Interfaces; 2021 Apr; 13(13):15601-15609. PubMed ID: 33764041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechano-responsive microcapsules with uniform thin shells.
    Vian A; Amstad E
    Soft Matter; 2019 Feb; 15(6):1290-1296. PubMed ID: 30468441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controllable preparation of monodisperse alginate microcapsules with oil cores.
    Mou CL; Deng QZ; Hu JX; Wang LY; Deng HB; Xiao G; Zhan Y
    J Colloid Interface Sci; 2020 Jun; 569():307-319. PubMed ID: 32126344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogel micromotors with catalyst-containing liquid core and shell.
    Zhu H; Nawar S; Werner JG; Liu J; Huang G; Mei Y; Weitz DA; Solovev AA
    J Phys Condens Matter; 2019 May; 31(21):214004. PubMed ID: 30777936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osmosis-Mediated Microfluidic Production of Submillimeter-Sized Capsules with an Ultrathin Shell for Cosmetic Applications.
    Hamonangan WM; Lee S; Choi YH; Li W; Tai M; Kim SH
    ACS Appl Mater Interfaces; 2022 Apr; 14(16):18159-18169. PubMed ID: 35426298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designer polymer-based microcapsules made using microfluidics.
    Chen PW; Erb RM; Studart AR
    Langmuir; 2012 Jan; 28(1):144-52. PubMed ID: 22118302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scalable production of double emulsion drops with thin shells.
    Vian A; Reuse B; Amstad E
    Lab Chip; 2018 Jun; 18(13):1936-1942. PubMed ID: 29881836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of Ultra-Thin-Shell Microcapsules Using Osmolarity-Controlled Swelling Method.
    Guo J; Hou L; Hou J; Yu J; Hu Q
    Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32340189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in the microfluidic production of functional microcapsules by multiple-emulsion templating.
    Kim JW; Han SH; Choi YH; Hamonangan WM; Oh Y; Kim SH
    Lab Chip; 2022 Jun; 22(12):2259-2291. PubMed ID: 35608122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic Fabrication of Phase-Inverted Microcapsules with Asymmetric Shell Membranes with Graded Porosity.
    Wu Z; Werner JG; Weitz DA
    ACS Macro Lett; 2021 Jan; 10(1):116-121. PubMed ID: 35548985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large ultrathin shelled drops produced via non-confined microfluidics.
    Chaurasia AS; Josephides DN; Sajjadi S
    Chemphyschem; 2015 Feb; 16(2):403-11. PubMed ID: 25382308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonspherical double emulsions with multiple distinct cores enveloped by ultrathin shells.
    Lee SS; Abbaspourrad A; Kim SH
    ACS Appl Mater Interfaces; 2014 Jan; 6(2):1294-300. PubMed ID: 24381982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Osmocapsules for direct measurement of osmotic strength.
    Kim SH; Lee TY; Lee SS
    Small; 2014 Mar; 10(6):1155-62. PubMed ID: 24482350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High throughput production of microcapsules using microfluidics for self-healing of cementitious materials.
    Ribeiro de Souza L; Al-Tabbaa A
    Lab Chip; 2021 Nov; 21(23):4652-4659. PubMed ID: 34734612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tandem emulsification for high-throughput production of double emulsions.
    Eggersdorfer ML; Zheng W; Nawar S; Mercandetti C; Ofner A; Leibacher I; Koehler S; Weitz DA
    Lab Chip; 2017 Feb; 17(5):936-942. PubMed ID: 28197593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spray-Assisted Formation of Micrometer-Sized Emulsions.
    Steinacher M; Amstad E
    ACS Appl Mater Interfaces; 2022 Mar; 14(11):13952-13961. PubMed ID: 35258934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of pH-responsive monodisperse microcapsules using interfacial tension of immiscible phases.
    Thakare DR; Schaer G; Yourdkhani M; Sottos NR
    Soft Matter; 2020 Jun; 16(22):5139-5147. PubMed ID: 32324190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Broad-temperature-range mechanically tunable hydrogel microcapsules for controlled active release.
    Jeong HS; Kim E; Park JP; Lee SJ; Lee H; Choi CH
    J Control Release; 2023 Apr; 356():337-346. PubMed ID: 36871645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic fabrication and permeation behaviors of uniform zwitterionic hydrogel microparticles and shells.
    Park J; Byun A; Kim DH; Shin SS; Kim JH; Kim JW
    J Colloid Interface Sci; 2014 Jul; 426():162-9. PubMed ID: 24863779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scalable single-step microfluidic production of single-core double emulsions with ultra-thin shells.
    Arriaga LR; Amstad E; Weitz DA
    Lab Chip; 2015 Aug; 15(16):3335-40. PubMed ID: 26152396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.