BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 33764050)

  • 1. Estimating the Roles of Protonation and Electronic Polarization in Absolute Binding Affinity Simulations.
    King E; Qi R; Li H; Luo R; Aitchison E
    J Chem Theory Comput; 2021 Apr; 17(4):2541-2555. PubMed ID: 33764050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SAMPL7 TrimerTrip host-guest binding affinities from extensive alchemical and end-point free energy calculations.
    Huai Z; Yang H; Li X; Sun Z
    J Comput Aided Mol Des; 2021 Jan; 35(1):117-129. PubMed ID: 33037549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular recognition in a diverse set of protein-ligand interactions studied with molecular dynamics simulations and end-point free energy calculations.
    Wang B; Li L; Hurley TD; Meroueh SO
    J Chem Inf Model; 2013 Oct; 53(10):2659-70. PubMed ID: 24032517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blind prediction of charged ligand binding affinities in a model binding site.
    Rocklin GJ; Boyce SE; Fischer M; Fish I; Mobley DL; Shoichet BK; Dill KA
    J Mol Biol; 2013 Nov; 425(22):4569-83. PubMed ID: 23896298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calculate protein-ligand binding affinities with the extended linear interaction energy method: application on the Cathepsin S set in the D3R Grand Challenge 3.
    He X; Man VH; Ji B; Xie XQ; Wang J
    J Comput Aided Mol Des; 2019 Jan; 33(1):105-117. PubMed ID: 30218199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tinker-OpenMM: Absolute and relative alchemical free energies using AMOEBA on GPUs.
    Harger M; Li D; Wang Z; Dalby K; Lagardère L; Piquemal JP; Ponder J; Ren P
    J Comput Chem; 2017 Sep; 38(23):2047-2055. PubMed ID: 28600826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elimination of Finite-Size Effects on Binding Free Energies via the Warp-Drive Method.
    Ekimoto T; Yamane T; Ikeguchi M
    J Chem Theory Comput; 2018 Dec; 14(12):6544-6559. PubMed ID: 30404450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Absolute Alchemical Free Energy Calculations for Ligand Binding: A Beginner's Guide.
    Aldeghi M; Bluck JP; Biggin PC
    Methods Mol Biol; 2018; 1762():199-232. PubMed ID: 29594774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate prediction of protonation state as a prerequisite for reliable MM-PB(GB)SA binding free energy calculations of HIV-1 protease inhibitors.
    Wittayanarakul K; Hannongbua S; Feig M
    J Comput Chem; 2008 Apr; 29(5):673-85. PubMed ID: 17849388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ligand binding affinity prediction by linear interaction energy methods.
    Hansson T; Marelius J; Aqvist J
    J Comput Aided Mol Des; 1998 Jan; 12(1):27-35. PubMed ID: 9570087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Absolute Protein Binding Free Energy Simulations for Ligands with Multiple Poses, a Thermodynamic Path That Avoids Exhaustive Enumeration of the Poses.
    Sakae Y; Zhang BW; Levy RM; Deng N
    J Comput Chem; 2020 Jan; 41(1):56-68. PubMed ID: 31621932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of end-point continuum-solvation methods for the calculation of protein-ligand binding free energies.
    Genheden S; Ryde U
    Proteins; 2012 May; 80(5):1326-42. PubMed ID: 22274991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rigorous Free Energy Perturbation Approach to Estimating Relative Binding Affinities between Ligands with Multiple Protonation and Tautomeric States.
    de Oliveira C; Yu HS; Chen W; Abel R; Wang L
    J Chem Theory Comput; 2019 Jan; 15(1):424-435. PubMed ID: 30537823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calculation of protein-ligand binding free energy by using a polarizable potential.
    Jiao D; Golubkov PA; Darden TA; Ren P
    Proc Natl Acad Sci U S A; 2008 Apr; 105(17):6290-5. PubMed ID: 18427113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of ligand binding affinity and orientation of xenoestrogens to the estrogen receptor by molecular dynamics simulations and the linear interaction energy method.
    van Lipzig MM; ter Laak AM; Jongejan A; Vermeulen NP; Wamelink M; Geerke D; Meerman JH
    J Med Chem; 2004 Feb; 47(4):1018-30. PubMed ID: 14761204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alchemical Binding Free Energy Calculations in AMBER20: Advances and Best Practices for Drug Discovery.
    Lee TS; Allen BK; Giese TJ; Guo Z; Li P; Lin C; McGee TD; Pearlman DA; Radak BK; Tao Y; Tsai HC; Xu H; Sherman W; York DM
    J Chem Inf Model; 2020 Nov; 60(11):5595-5623. PubMed ID: 32936637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple protonation equilibria in electrostatics of protein-protein binding.
    Piłat Z; Antosiewicz JM
    J Phys Chem B; 2008 Nov; 112(47):15074-85. PubMed ID: 18950218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamic integration to predict host-guest binding affinities.
    Lawrenz M; Wereszczynski J; Ortiz-Sánchez JM; Nichols SE; McCammon JA
    J Comput Aided Mol Des; 2012 May; 26(5):569-76. PubMed ID: 22350568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate predictions of nonpolar solvation free energies require explicit consideration of binding-site hydration.
    Genheden S; Mikulskis P; Hu L; Kongsted J; Söderhjelm P; Ryde U
    J Am Chem Soc; 2011 Aug; 133(33):13081-92. PubMed ID: 21728337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linear interaction energy models for beta-secretase (BACE) inhibitors: Role of van der Waals, electrostatic, and continuum-solvation terms.
    Tounge BA; Rajamani R; Baxter EW; Reitz AB; Reynolds CH
    J Mol Graph Model; 2006 May; 24(6):475-84. PubMed ID: 16293430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.