BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 33764064)

  • 1. Catalysis by Bidentate Iodine(III)-Based Halogen Donors: Surpassing the Activity of Strong Lewis Acids.
    Portela S; Cabrera-Trujillo JJ; Fernández I
    J Org Chem; 2021 Apr; 86(7):5317-5326. PubMed ID: 33764064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lewis Acid-Catalyzed Diels-Alder Reactions: Reactivity Trends across the Periodic Table.
    Vermeeren P; Tiezza MD; van Dongen M; Fernández I; Bickelhaupt FM; Hamlin TA
    Chemistry; 2021 Jul; 27(41):10610-10620. PubMed ID: 33780068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Pauli Repulsion-Lowering Concept in Catalysis.
    Hamlin TA; Bickelhaupt FM; Fernández I
    Acc Chem Res; 2021 Apr; 54(8):1972-1981. PubMed ID: 33759502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origin of rate enhancement and asynchronicity in iminium catalyzed Diels-Alder reactions.
    Vermeeren P; Hamlin TA; Fernández I; Bickelhaupt FM
    Chem Sci; 2020 Jul; 11(31):8105-8112. PubMed ID: 34094173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Bidentate Iodine(III)-Based Halogen-Bond Donor as a Powerful Organocatalyst*.
    Heinen F; Reinhard DL; Engelage E; Huber SM
    Angew Chem Int Ed Engl; 2021 Mar; 60(10):5069-5073. PubMed ID: 33215804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unravelling the Mechanism and Governing Factors in Lewis Acid and Non-Covalent Diels-Alder Catalysis: Different Perspectives.
    Vermeersch L; De Proft F; Faulkner V; De Vleeschouwer F
    Int J Mol Sci; 2023 Mar; 24(5):. PubMed ID: 36902369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. η
    Portela S; Fernández I
    Chem Asian J; 2023 Feb; 18(3):e202201214. PubMed ID: 36515097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational studies on the BF3-catalyzed cycloaddition of furan with methyl vinyl ketone: a new look at Lewis acid catalysis.
    Avalos M; Babiano R; Bravo JL; Cintas P; Jimenez JL; Palacios JC; Silva MA
    J Org Chem; 2000 Oct; 65(20):6613-9. PubMed ID: 11052109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Origin of Catalysis and Regioselectivity of Lewis Acid-Catalyzed Diels-Alder Reactions with Tropone.
    Tiekink EH; Vermeeren P; Hamlin TA
    Chemistry; 2023 Jul; 29(39):e202301223. PubMed ID: 37078400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iodine(III) Derivatives as Halogen Bonding Organocatalysts.
    Heinen F; Engelage E; Dreger A; Weiss R; Huber SM
    Angew Chem Int Ed Engl; 2018 Mar; 57(14):3830-3833. PubMed ID: 29365212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How Ionization Catalyzes Diels-Alder Reactions.
    Vermeeren P; Hamlin TA; Bickelhaupt FM
    Chemistry; 2022 Jul; 28(40):e202200987. PubMed ID: 35442551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bifunctional Hydrogen Bond Donor-Catalyzed Diels-Alder Reactions: Origin of Stereoselectivity and Rate Enhancement.
    Vermeeren P; Hamlin TA; Bickelhaupt FM; Fernández I
    Chemistry; 2021 Mar; 27(16):5180-5190. PubMed ID: 33169912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How Lewis Acids Catalyze Diels-Alder Reactions.
    Vermeeren P; Hamlin TA; Fernández I; Bickelhaupt FM
    Angew Chem Int Ed Engl; 2020 Apr; 59(15):6201-6206. PubMed ID: 31944503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics study and theoretical modeling of the Diels-Alder reactions of cyclopentadiene and cyclohexadiene with methyl vinyl ketone. The effects of a novel organotungsten catalyst.
    Fu YS; Tsai SC; Huang CH; Yen SY; Hu WP; Yu SJ
    J Org Chem; 2003 Apr; 68(8):3068-77. PubMed ID: 12688774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Origin of Catalysis and Selectivity in Lewis Acid-Promoted Diels-Alder Reactions Involving Vinylazaarenes as Dienophiles.
    Portela S; Fernández I
    J Org Chem; 2022 Jul; 87(14):9307-9315. PubMed ID: 35794859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intramolecular Diels-Alder reactions of cycloalkenones: stereoselectivity, Lewis acid acceleration, and halogen substituent effects.
    Pham HV; Paton RS; Ross AG; Danishefsky SJ; Houk KN
    J Am Chem Soc; 2014 Feb; 136(6):2397-403. PubMed ID: 24410341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How Alkali Cations Catalyze Aromatic Diels-Alder Reactions.
    Vermeeren P; Brinkhuis F; Hamlin TA; Bickelhaupt FM
    Chem Asian J; 2020 Apr; 15(7):1167-1174. PubMed ID: 32012430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lewis Acid-Catalyzed Carbonyl-Ene Reaction: Interplay between Aromaticity, Synchronicity, and Pauli Repulsion.
    Rodríguez HA; Cruz DA; Padrón JI; Fernández I
    J Org Chem; 2023 Aug; 88(15):11102-11110. PubMed ID: 37485981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Silico Design of Halogen-Bonding-Based Organocatalyst for Diels-Alder Reaction, Claisen Rearrangement, and Cope-Type Hydroamination.
    Kee CW; Wong MW
    J Org Chem; 2016 Sep; 81(17):7459-70. PubMed ID: 27486786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. exo/endo Selectivity Control in Diels-Alder Reactions of Geminal Bis(silyl) Dienes: Theoretical and Experimental Studies.
    Wang J; Liu Z; Li J; Song Z; Hu C; Su Z
    J Org Chem; 2019 Apr; 84(7):3940-3952. PubMed ID: 30865446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.