BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 33764164)

  • 1. Defining Spatial Relationships Between Spinal Cord Axons and Blood Vessels in Hydrogel Scaffolds.
    Siddiqui AM; Oswald D; Papamichalopoulos S; Kelly D; Summer P; Polzin M; Hakim J; Schmeichel AM; Chen B; Yaszemski MJ; Windebank AJ; Madigan NN
    Tissue Eng Part A; 2021 Jun; 27(11-12):648-664. PubMed ID: 33764164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of cellular architecture, axonal growth, and blood vessel formation through cell-loaded polymer scaffolds in the transected rat spinal cord.
    Madigan NN; Chen BK; Knight AM; Rooney GE; Sweeney E; Kinnavane L; Yaszemski MJ; Dockery P; O'Brien T; McMahon SS; Windebank AJ
    Tissue Eng Part A; 2014 Nov; 20(21-22):2985-97. PubMed ID: 24854680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GDNF Schwann cells in hydrogel scaffolds promote regional axon regeneration, remyelination and functional improvement after spinal cord transection in rats.
    Chen BK; Madigan NN; Hakim JS; Dadsetan M; McMahon SS; Yaszemski MJ; Windebank AJ
    J Tissue Eng Regen Med; 2018 Jan; 12(1):e398-e407. PubMed ID: 28296347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly (D,L-lactic acid) macroporous guidance scaffolds seeded with Schwann cells genetically modified to secrete a bi-functional neurotrophin implanted in the completely transected adult rat thoracic spinal cord.
    Hurtado A; Moon LD; Maquet V; Blits B; Jérôme R; Oudega M
    Biomaterials; 2006 Jan; 27(3):430-42. PubMed ID: 16102815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combinatorial tissue engineering partially restores function after spinal cord injury.
    Hakim JS; Rodysill BR; Chen BK; Schmeichel AM; Yaszemski MJ; Windebank AJ; Madigan NN
    J Tissue Eng Regen Med; 2019 May; 13(5):857-873. PubMed ID: 30808065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-transplantation of neural stem cells and Schwann cells within poly (L-lactic-co-glycolic acid) scaffolds facilitates axonal regeneration in hemisected rat spinal cord.
    Xia L; Wan H; Hao SY; Li DZ; Chen G; Gao CC; Li JH; Yang F; Wang SG; Liu S
    Chin Med J (Engl); 2013 Mar; 126(5):909-17. PubMed ID: 23489801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell-seeded alginate hydrogel scaffolds promote directed linear axonal regeneration in the injured rat spinal cord.
    Günther MI; Weidner N; Müller R; Blesch A
    Acta Biomater; 2015 Nov; 27():140-150. PubMed ID: 26348141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural stem cell- and Schwann cell-loaded biodegradable polymer scaffolds support axonal regeneration in the transected spinal cord.
    Olson HE; Rooney GE; Gross L; Nesbitt JJ; Galvin KE; Knight A; Chen B; Yaszemski MJ; Windebank AJ
    Tissue Eng Part A; 2009 Jul; 15(7):1797-805. PubMed ID: 19191513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Matrix inclusion within synthetic hydrogel guidance channels improves specific supraspinal and local axonal regeneration after complete spinal cord transection.
    Tsai EC; Dalton PD; Shoichet MS; Tator CH
    Biomaterials; 2006 Jan; 27(3):519-33. PubMed ID: 16099035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of polymer scaffolds in rat spinal cord: a step toward quantitative assessment of combinatorial approaches to spinal cord repair.
    Chen BK; Knight AM; Madigan NN; Gross L; Dadsetan M; Nesbitt JJ; Rooney GE; Currier BL; Yaszemski MJ; Spinner RJ; Windebank AJ
    Biomaterials; 2011 Nov; 32(32):8077-86. PubMed ID: 21803415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulated viral BDNF delivery in combination with Schwann cells promotes axonal regeneration through capillary alginate hydrogels after spinal cord injury.
    Liu S; Sandner B; Schackel T; Nicholson L; Chtarto A; Tenenbaum L; Puttagunta R; Müller R; Weidner N; Blesch A
    Acta Biomater; 2017 Sep; 60():167-180. PubMed ID: 28735026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Open-Spaced Ridged Hydrogel Scaffolds Containing TiO
    Siddiqui AM; Thiele F; Stewart RN; Rangnick S; Weiss GJ; Chen BK; Silvernail JL; Strickland T; Nesbitt JJ; Lim K; Schwarzbauer JE; Schwartz J; Yaszemski MJ; Windebank AJ; Madigan NN
    Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37373396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acute and delayed implantation of positively charged 2-hydroxyethyl methacrylate scaffolds in spinal cord injury in the rat.
    Hejcl A; Urdzikova L; Sedy J; Lesny P; Pradny M; Michalek J; Burian M; Hajek M; Zamecnik J; Jendelova P; Sykova E
    J Neurosurg Spine; 2008 Jan; 8(1):67-73. PubMed ID: 18173349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aligned hydrogel tubes guide regeneration following spinal cord injury.
    Dumont CM; Carlson MA; Munsell MK; Ciciriello AJ; Strnadova K; Park J; Cummings BJ; Anderson AJ; Shea LD
    Acta Biomater; 2019 Mar; 86():312-322. PubMed ID: 30610918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sustained delivery of dibutyryl cyclic adenosine monophosphate to the transected spinal cord via oligo [(polyethylene glycol) fumarate] hydrogels.
    Rooney GE; Knight AM; Madigan NN; Gross L; Chen B; Giraldo CV; Seo S; Nesbitt JJ; Dadsetan M; Yaszemski MJ; Windebank AJ
    Tissue Eng Part A; 2011 May; 17(9-10):1287-302. PubMed ID: 21198413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of tissue ingrowth in SIKVAV-modified highly superporous PHEMA scaffolds with oriented pores after bridging a spinal cord transection.
    Hejčl A; Růžička J; Proks V; Macková H; Kubinová Š; Tukmachev D; Cihlář J; Horák D; Jendelová P
    J Mater Sci Mater Med; 2018 Jun; 29(7):89. PubMed ID: 29938301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual-Cues Laden Scaffold Facilitates Neurovascular Regeneration and Motor Functional Recovery After Complete Spinal Cord Injury.
    Liu D; Shen H; Shen Y; Long G; He X; Zhao Y; Yang Z; Dai J; Li X
    Adv Healthc Mater; 2021 May; 10(10):e2100089. PubMed ID: 33739626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peptide Hydrogel Scaffold for Mesenchymal Precursor Cells Implanted to Injured Adult Rat Spinal Cord.
    Wiseman TM; Baron-Heeris D; Houwers IGJ; Keenan R; Williams RJ; Nisbet DR; Harvey AR; Hodgetts SI
    Tissue Eng Part A; 2021 Aug; 27(15-16):993-1007. PubMed ID: 33040713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hyaluronic acid scaffold has a neuroprotective effect in hemisection spinal cord injury.
    Kushchayev SV; Giers MB; Hom Eng D; Martirosyan NL; Eschbacher JM; Mortazavi MM; Theodore N; Panitch A; Preul MC
    J Neurosurg Spine; 2016 Jul; 25(1):114-24. PubMed ID: 26943251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adjusting the chemical and physical properties of hydrogels leads to improved stem cell survival and tissue ingrowth in spinal cord injury reconstruction: a comparative study of four methacrylate hydrogels.
    Hejčl A; Růžička J; Kapcalová M; Turnovcová K; Krumbholcová E; Přádný M; Michálek J; Cihlář J; Jendelová P; Syková E
    Stem Cells Dev; 2013 Oct; 22(20):2794-805. PubMed ID: 23750454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.