BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 33764372)

  • 21. Development of a CRISPR/Cas9 System for Methylococcus capsulatus
    Tapscott T; Guarnieri MT; Henard CA
    Appl Environ Microbiol; 2019 Jun; 85(11):. PubMed ID: 30926729
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system.
    Jiang Y; Chen B; Duan C; Sun B; Yang J; Yang S
    Appl Environ Microbiol; 2015 Apr; 81(7):2506-14. PubMed ID: 25636838
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Forced Recycling of an AMA1-Based Genome-Editing Plasmid Allows for Efficient Multiple Gene Deletion/Integration in the Industrial Filamentous Fungus
    Katayama T; Nakamura H; Zhang Y; Pascal A; Fujii W; Maruyama JI
    Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30478227
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CRISPR-Cas9-mediated pinpoint microbial genome editing aided by target-mismatched sgRNAs.
    Lee HJ; Kim HJ; Lee SJ
    Genome Res; 2020 May; 30(5):768-775. PubMed ID: 32327447
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Combination of ssDNA recombineering and CRISPR-Cas9 for Pseudomonas putida KT2440 genome editing.
    Wu Z; Chen Z; Gao X; Li J; Shang G
    Appl Microbiol Biotechnol; 2019 Mar; 103(6):2783-2795. PubMed ID: 30762073
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CRISPR-Cas9/CRISPRi tools for cell factory construction in E. coli.
    Hashemi A
    World J Microbiol Biotechnol; 2020 Jun; 36(7):96. PubMed ID: 32583135
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A double-locus scarless genome editing system in Escherichia coli.
    Liu H; Hou G; Wang P; Guo G; Wang Y; Yang N; Rehman MNU; Li C; Li Q; Zheng J; Zeng J; Li S
    Biotechnol Lett; 2020 Aug; 42(8):1457-1465. PubMed ID: 32130564
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Highly efficient genome editing in N. gerenzanensis using an inducible CRISPR/Cas9-RecA system.
    Yue X; Xia T; Wang S; Dong H; Li Y
    Biotechnol Lett; 2020 Sep; 42(9):1699-1706. PubMed ID: 32314149
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A programmable CRISPR/Cas9-based phage defense system for Escherichia coli BL21(DE3).
    Liu L; Zhao D; Ye L; Zhan T; Xiong B; Hu M; Bi C; Zhang X
    Microb Cell Fact; 2020 Jul; 19(1):136. PubMed ID: 32620105
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A CRISPR-Cpf1-Assisted Non-Homologous End Joining Genome Editing System of Mycobacterium smegmatis.
    Sun B; Yang J; Yang S; Ye RD; Chen D; Jiang Y
    Biotechnol J; 2018 Sep; 13(9):e1700588. PubMed ID: 30039929
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cationic Polymer-Mediated CRISPR/Cas9 Plasmid Delivery for Genome Editing.
    Zhang Z; Wan T; Chen Y; Chen Y; Sun H; Cao T; Songyang Z; Tang G; Wu C; Ping Y; Xu FJ; Huang J
    Macromol Rapid Commun; 2019 Mar; 40(5):e1800068. PubMed ID: 29708298
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CRISPR-Based Construction of a BL21 (DE3)-Derived Variant Strain Library to Rapidly Improve Recombinant Protein Production.
    Li ZJ; Zhang ZX; Xu Y; Shi TQ; Ye C; Sun XM; Huang H
    ACS Synth Biol; 2022 Jan; 11(1):343-352. PubMed ID: 34919397
    [No Abstract]   [Full Text] [Related]  

  • 33. CRISPR/Cas9-Based Genome Editing in Plants.
    Zhang Y; Ma X; Xie X; Liu YG
    Prog Mol Biol Transl Sci; 2017; 149():133-150. PubMed ID: 28712494
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CRISPR-Cas9-mediated genome editing in apple and grapevine.
    Osakabe Y; Liang Z; Ren C; Nishitani C; Osakabe K; Wada M; Komori S; Malnoy M; Velasco R; Poli M; Jung MH; Koo OJ; Viola R; Nagamangala Kanchiswamy C
    Nat Protoc; 2018 Dec; 13(12):2844-2863. PubMed ID: 30390050
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative analysis of mouse and human preimplantation development following POU5F1 CRISPR/Cas9 targeting reveals interspecies differences.
    Stamatiadis P; Boel A; Cosemans G; Popovic M; Bekaert B; Guggilla R; Tang M; De Sutter P; Van Nieuwerburgh F; Menten B; Stoop D; Chuva de Sousa Lopes SM; Coucke P; Heindryckx B
    Hum Reprod; 2021 Apr; 36(5):1242-1252. PubMed ID: 33609360
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Harnessing the native type I-B CRISPR-Cas for genome editing in a polyploid archaeon.
    Cheng F; Gong L; Zhao D; Yang H; Zhou J; Li M; Xiang H
    J Genet Genomics; 2017 Nov; 44(11):541-548. PubMed ID: 29169919
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A plasmid toolset for CRISPR-mediated genome editing and CRISPRi gene regulation in Escherichia coli.
    Jervis AJ; Hanko EKR; Dunstan MS; Robinson CJ; Takano E; Scrutton NS
    Microb Biotechnol; 2021 May; 14(3):1120-1129. PubMed ID: 33710766
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development and application of a rapid all-in-one plasmid CRISPR-Cas9 system for iterative genome editing in Bacillus subtilis.
    Zou Y; Qiu L; Xie A; Han W; Zhang S; Li J; Zhao S; Li Y; Liang Y; Hu Y
    Microb Cell Fact; 2022 Aug; 21(1):173. PubMed ID: 35999638
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Challenges of in vitro genome editing with CRISPR/Cas9 and possible solutions: A review.
    Ebrahimi V; Hashemi A
    Gene; 2020 Aug; 753():144813. PubMed ID: 32470504
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genome Editing by CRISPR/Cas9 in Sorghum Through Biolistic Bombardment.
    Liu G; Li J; Godwin ID
    Methods Mol Biol; 2019; 1931():169-183. PubMed ID: 30652290
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.