These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 33764464)
1. Mutagenic mechanisms of cancer-associated DNA polymerase ϵ alleles. Herzog M; Alonso-Perez E; Salguero I; Warringer J; Adams DJ; Jackson SP; Puddu F Nucleic Acids Res; 2021 Apr; 49(7):3919-3931. PubMed ID: 33764464 [TBL] [Abstract][Full Text] [Related]
2. Mismatch repair and DNA polymerase δ proofreading prevent catastrophic accumulation of leading strand errors in cells expressing a cancer-associated DNA polymerase ϵ variant. Bulock CR; Xing X; Shcherbakova PV Nucleic Acids Res; 2020 Sep; 48(16):9124-9134. PubMed ID: 32756902 [TBL] [Abstract][Full Text] [Related]
3. Emergence of DNA polymerase ε antimutators that escape error-induced extinction in yeast. Williams LN; Herr AJ; Preston BD Genetics; 2013 Mar; 193(3):751-70. PubMed ID: 23307893 [TBL] [Abstract][Full Text] [Related]
4. DNA polymerase ε leading strand signature mutations result from defects in its proofreading activity. Johnson RE; Prakash L; Prakash S J Biol Chem; 2023 Jul; 299(7):104913. PubMed ID: 37307920 [TBL] [Abstract][Full Text] [Related]
5. dNTP pool levels modulate mutator phenotypes of error-prone DNA polymerase ε variants. Williams LN; Marjavaara L; Knowels GM; Schultz EM; Fox EJ; Chabes A; Herr AJ Proc Natl Acad Sci U S A; 2015 May; 112(19):E2457-66. PubMed ID: 25827226 [TBL] [Abstract][Full Text] [Related]
6. Probing the mechanisms of two exonuclease domain mutators of DNA polymerase ϵ. Dahl JM; Thomas N; Tracy MA; Hearn BL; Perera L; Kennedy SR; Herr AJ; Kunkel TA Nucleic Acids Res; 2022 Jan; 50(2):962-974. PubMed ID: 35037018 [TBL] [Abstract][Full Text] [Related]
7. Expression of the cancer-associated DNA polymerase ε P286R in fission yeast leads to translesion synthesis polymerase dependent hypermutation and defective DNA replication. Soriano I; Vazquez E; De Leon N; Bertrand S; Heitzer E; Toumazou S; Bo Z; Palles C; Pai CC; Humphrey TC; Tomlinson I; Cotterill S; Kearsey SE PLoS Genet; 2021 Jul; 17(7):e1009526. PubMed ID: 34228709 [TBL] [Abstract][Full Text] [Related]
8. The absence of the catalytic domains of Saccharomyces cerevisiae DNA polymerase ϵ strongly reduces DNA replication fidelity. Garbacz MA; Cox PB; Sharma S; Lujan SA; Chabes A; Kunkel TA Nucleic Acids Res; 2019 May; 47(8):3986-3995. PubMed ID: 30698744 [TBL] [Abstract][Full Text] [Related]
9. Fidelity of DNA polymerase epsilon holoenzyme from budding yeast Saccharomyces cerevisiae. Shimizu K; Hashimoto K; Kirchner JM; Nakai W; Nishikawa H; Resnick MA; Sugino A J Biol Chem; 2002 Oct; 277(40):37422-9. PubMed ID: 12124389 [TBL] [Abstract][Full Text] [Related]
10. Fidelity consequences of the impaired interaction between DNA polymerase epsilon and the GINS complex. Garbacz M; Araki H; Flis K; Bebenek A; Zawada AE; Jonczyk P; Makiela-Dzbenska K; Fijalkowska IJ DNA Repair (Amst); 2015 May; 29():23-35. PubMed ID: 25758782 [TBL] [Abstract][Full Text] [Related]
11. Human Pol ε-dependent replication errors and the influence of mismatch repair on their correction. Agbor AA; Göksenin AY; LeCompte KG; Hans SH; Pursell ZF DNA Repair (Amst); 2013 Nov; 12(11):954-63. PubMed ID: 24051051 [TBL] [Abstract][Full Text] [Related]
12. Evidence for interplay among yeast replicative DNA polymerases alpha, delta and epsilon from studies of exonuclease and polymerase active site mutations. Pavlov YI; Maki S; Maki H; Kunkel TA BMC Biol; 2004 May; 2():11. PubMed ID: 15163346 [TBL] [Abstract][Full Text] [Related]
13. Mismatch repair-independent increase in spontaneous mutagenesis in yeast lacking non-essential subunits of DNA polymerase ε. Aksenova A; Volkov K; Maceluch J; Pursell ZF; Rogozin IB; Kunkel TA; Pavlov YI; Johansson E PLoS Genet; 2010 Nov; 6(11):e1001209. PubMed ID: 21124948 [TBL] [Abstract][Full Text] [Related]
14. Functional Analysis of Cancer-Associated DNA Polymerase ε Variants in Barbari SR; Kane DP; Moore EA; Shcherbakova PV G3 (Bethesda); 2018 Mar; 8(3):1019-1029. PubMed ID: 29352080 [TBL] [Abstract][Full Text] [Related]
15. Spontaneous Polyploids and Antimutators Compete During the Evolution of Tracy MA; Lee MB; Hearn BL; Dowsett IT; Thurber LC; Loo J; Loeb AM; Preston K; Tuncel MI; Ghodsian N; Bode A; Tang TT; Chia AR; Herr AJ Genetics; 2020 Aug; 215(4):959-974. PubMed ID: 32513814 [TBL] [Abstract][Full Text] [Related]
16. Exonuclease 1 preferentially repairs mismatches generated by DNA polymerase α. Liberti SE; Larrea AA; Kunkel TA DNA Repair (Amst); 2013 Feb; 12(2):92-6. PubMed ID: 23245696 [TBL] [Abstract][Full Text] [Related]
17. A DNA polymerase epsilon mutant that specifically causes +1 frameshift mutations within homonucleotide runs in yeast. Kirchner JM; Tran H; Resnick MA Genetics; 2000 Aug; 155(4):1623-32. PubMed ID: 10924461 [TBL] [Abstract][Full Text] [Related]
18. Dpb2p, a noncatalytic subunit of DNA polymerase epsilon, contributes to the fidelity of DNA replication in Saccharomyces cerevisiae. Jaszczur M; Flis K; Rudzka J; Kraszewska J; Budd ME; Polaczek P; Campbell JL; Jonczyk P; Fijalkowska IJ Genetics; 2008 Feb; 178(2):633-47. PubMed ID: 18245343 [TBL] [Abstract][Full Text] [Related]
19. A recurrent cancer-associated substitution in DNA polymerase ε produces a hyperactive enzyme. Xing X; Kane DP; Bulock CR; Moore EA; Sharma S; Chabes A; Shcherbakova PV Nat Commun; 2019 Jan; 10(1):374. PubMed ID: 30670691 [TBL] [Abstract][Full Text] [Related]
20. Mutational processes of distinct POLE exonuclease domain mutants drive an enrichment of a specific TP53 mutation in colorectal cancer. Fang H; Barbour JA; Poulos RC; Katainen R; Aaltonen LA; Wong JWH PLoS Genet; 2020 Feb; 16(2):e1008572. PubMed ID: 32012149 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]