These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 33764464)
21. Structural consequence of the most frequently recurring cancer-associated substitution in DNA polymerase ε. Parkash V; Kulkarni Y; Ter Beek J; Shcherbakova PV; Kamerlin SCL; Johansson E Nat Commun; 2019 Jan; 10(1):373. PubMed ID: 30670696 [TBL] [Abstract][Full Text] [Related]
22. Base analog 6-N-hydroxylaminopurine mutagenesis in the yeast Saccharomyces cerevisiae is controlled by replicative DNA polymerases. Shcherbakova PV; Noskov VN; Pshenichnov MR; Pavlov YI Mutat Res; 1996 Jul; 369(1-2):33-44. PubMed ID: 8700180 [TBL] [Abstract][Full Text] [Related]
23. The 3'-->5' exonucleases of DNA polymerases delta and epsilon and the 5'-->3' exonuclease Exo1 have major roles in postreplication mutation avoidance in Saccharomyces cerevisiae. Tran HT; Gordenin DA; Resnick MA Mol Cell Biol; 1999 Mar; 19(3):2000-7. PubMed ID: 10022887 [TBL] [Abstract][Full Text] [Related]
24. A Major Role of DNA Polymerase δ in Replication of Both the Leading and Lagging DNA Strands. Johnson RE; Klassen R; Prakash L; Prakash S Mol Cell; 2015 Jul; 59(2):163-175. PubMed ID: 26145172 [TBL] [Abstract][Full Text] [Related]
25. Mismatch repair-independent tandem repeat sequence instability resulting from ribonucleotide incorporation by DNA polymerase ε. Clark AB; Lujan SA; Kissling GE; Kunkel TA DNA Repair (Amst); 2011 May; 10(5):476-82. PubMed ID: 21414850 [TBL] [Abstract][Full Text] [Related]
26. Regulation of B family DNA polymerase fidelity by a conserved active site residue: characterization of M644W, M644L and M644F mutants of yeast DNA polymerase epsilon. Pursell ZF; Isoz I; Lundström EB; Johansson E; Kunkel TA Nucleic Acids Res; 2007; 35(9):3076-86. PubMed ID: 17452367 [TBL] [Abstract][Full Text] [Related]
27. Saccharomyces cerevisiae DNA polymerase epsilon and polymerase sigma interact physically and functionally, suggesting a role for polymerase epsilon in sister chromatid cohesion. Edwards S; Li CM; Levy DL; Brown J; Snow PM; Campbell JL Mol Cell Biol; 2003 Apr; 23(8):2733-48. PubMed ID: 12665575 [TBL] [Abstract][Full Text] [Related]
28. Evidence that DNA polymerase δ contributes to initiating leading strand DNA replication in Saccharomyces cerevisiae. Garbacz MA; Lujan SA; Burkholder AB; Cox PB; Wu Q; Zhou ZX; Haber JE; Kunkel TA Nat Commun; 2018 Feb; 9(1):858. PubMed ID: 29487291 [TBL] [Abstract][Full Text] [Related]
29. Recombination and Pol ζ Rescue Defective DNA Replication upon Impaired CMG Helicase-Pol ε Interaction. Denkiewicz-Kruk M; Jedrychowska M; Endo S; Araki H; Jonczyk P; Dmowski M; Fijalkowska IJ Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33322195 [TBL] [Abstract][Full Text] [Related]
30. Polymerase epsilon mutations and concomitant β2-microglobulin mutations in cancer. Voutsadakis IA Gene; 2018 Mar; 647():31-38. PubMed ID: 29320758 [TBL] [Abstract][Full Text] [Related]
31. Mismatch repair operates at the replication fork in direct competition with mismatch extension by DNA polymerase δ. Klassen R; Gangavarapu V; Johnson RE; Prakash L; Prakash S J Biol Chem; 2023 Apr; 299(4):104598. PubMed ID: 36898578 [TBL] [Abstract][Full Text] [Related]
32. A common cancer-associated DNA polymerase ε mutation causes an exceptionally strong mutator phenotype, indicating fidelity defects distinct from loss of proofreading. Kane DP; Shcherbakova PV Cancer Res; 2014 Apr; 74(7):1895-901. PubMed ID: 24525744 [TBL] [Abstract][Full Text] [Related]
33. The DNA polymerase domain of pol(epsilon) is required for rapid, efficient, and highly accurate chromosomal DNA replication, telomere length maintenance, and normal cell senescence in Saccharomyces cerevisiae. Ohya T; Kawasaki Y; Hiraga S; Kanbara S; Nakajo K; Nakashima N; Suzuki A; Sugino A J Biol Chem; 2002 Aug; 277(31):28099-108. PubMed ID: 12015307 [TBL] [Abstract][Full Text] [Related]
34. Colon cancer-associated mutator DNA polymerase δ variant causes expansion of dNTP pools increasing its own infidelity. Mertz TM; Sharma S; Chabes A; Shcherbakova PV Proc Natl Acad Sci U S A; 2015 May; 112(19):E2467-76. PubMed ID: 25827231 [TBL] [Abstract][Full Text] [Related]
35. The evolving tale of Pol2 function. Gallitto M; Zhang Z Genes Dev; 2023 Feb; 37(3-4):72-73. PubMed ID: 36813532 [TBL] [Abstract][Full Text] [Related]
36. In vivo consequences of putative active site mutations in yeast DNA polymerases alpha, epsilon, delta, and zeta. Pavlov YI; Shcherbakova PV; Kunkel TA Genetics; 2001 Sep; 159(1):47-64. PubMed ID: 11560886 [TBL] [Abstract][Full Text] [Related]
37. The C-terminus of Dpb2 is required for interaction with Pol2 and for cell viability. Isoz I; Persson U; Volkov K; Johansson E Nucleic Acids Res; 2012 Dec; 40(22):11545-53. PubMed ID: 23034803 [TBL] [Abstract][Full Text] [Related]
38. Antimutator alleles of yeast DNA polymerase gamma modulate the balance between DNA synthesis and excision. Foury F; Szczepanowska K PLoS One; 2011; 6(11):e27847. PubMed ID: 22114710 [TBL] [Abstract][Full Text] [Related]
39. Stationary-phase mutations in proofreading exonuclease-deficient strains of the yeast Saccharomyces cerevisiae. Babudri N; Pavlov YI; Matmati N; Ludovisi C; Achilli A Mol Genet Genomics; 2001 Apr; 265(2):362-6. PubMed ID: 11361348 [TBL] [Abstract][Full Text] [Related]
40. Proofreading activity of DNA polymerase Pol2 mediates 3'-end processing during nonhomologous end joining in yeast. Tseng SF; Gabriel A; Teng SC PLoS Genet; 2008 Apr; 4(4):e1000060. PubMed ID: 18437220 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]