These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 33764755)

  • 1. Bispyrene Functionalization Drives Self-Assembly of Graphite Nanoplates into Highly Efficient Heat Spreader Foils.
    Ferraro G; Bernal MM; Carniato F; Novara C; Tortello M; Ronchetti S; Giorgis F; Fina A
    ACS Appl Mater Interfaces; 2021 Apr; 13(13):15509-15517. PubMed ID: 33764755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polycaprolactone Adsorption and Nucleation onto Graphite Nanoplates for Highly Flexible, Thermally Conductive, and Thermomechanically Stiff Nanopapers.
    Li K; Battegazzore D; Pérez-Camargo RA; Liu G; Monticelli O; Müller AJ; Fina A
    ACS Appl Mater Interfaces; 2021 Dec; 13(49):59206-59220. PubMed ID: 34851623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stereocomplexation of Poly(Lactic Acid)s on Graphite Nanoplatelets: From Functionalized Nanoparticles to Self-assembled Nanostructures.
    Eleuteri M; Bernal M; Milanesio M; Monticelli O; Fina A
    Front Chem; 2019; 7():176. PubMed ID: 30984744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D Bridged Carbon Nanoring/Graphene Hybrid Paper as a High-Performance Lateral Heat Spreader.
    Zhang J; Shi G; Jiang C; Ju S; Jiang D
    Small; 2015 Dec; 11(46):6197-204. PubMed ID: 26476622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermally and Electrically Conductive Nanopapers from Reduced Graphene Oxide: Effect of Nanoflakes Thermal Annealing on the Film Structure and Properties.
    Bernal MM; Tortello M; Colonna S; Saracco G; Fina A
    Nanomaterials (Basel); 2017 Dec; 7(12):. PubMed ID: 29206146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tailoring Highly Ordered Graphene Framework in Epoxy for High-Performance Polymer-Based Heat Dissipation Plates.
    Ying J; Tan X; Lv L; Wang X; Gao J; Yan Q; Ma H; Nishimura K; Li H; Yu J; Liu TH; Xiang R; Sun R; Jiang N; Wong C; Maruyama S; Lin CT; Dai W
    ACS Nano; 2021 Aug; 15(8):12922-12934. PubMed ID: 34304570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Thermal Conductive Graphite Films Derived from the Graphitization of Chemically Imidized Polyimide Films.
    Sun M; Wang X; Ye Z; Chen X; Xue Y; Yang G
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silver-Nanoparticle-Embedded Hybrid Nanopaper with Significant Thermal Conductivity Enhancement.
    Li J; Cheng R; Cheng Z; Duan C; Wang B; Zeng J; Xu J; Tian X; Chen H; Gao W; Chen K
    ACS Appl Mater Interfaces; 2021 Aug; 13(30):36171-36181. PubMed ID: 34275277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly Oriented Graphite Aerogel Fabricated by Confined Liquid-Phase Expansion for Anisotropically Thermally Conductive Epoxy Composites.
    Li M; Liu J; Pan S; Zhang J; Liu Y; Liu J; Lu H
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27476-27484. PubMed ID: 32432449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interfacial Modulation of Graphene by Polythiophene with Controlled Molecular Weight to Enhance Thermal Conductivity.
    Li Y; Wang Y; Chen P; Xia R; Wu B; Qian J
    Membranes (Basel); 2021 Nov; 11(11):. PubMed ID: 34832125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupled Chiral Structure in Graphene-Based Film for Ultrahigh Thermal Conductivity in Both In-Plane and Through-Plane Directions.
    Meng X; Pan H; Zhu C; Chen Z; Lu T; Xu D; Li Y; Zhu S
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):22611-22622. PubMed ID: 29888597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-Plane Anisotropic Thermally Conductive Nanopapers by Drawing Bacterial Cellulose Hydrogels.
    Uetani K; Okada T; Oyama HT
    ACS Macro Lett; 2017 Apr; 6(4):345-349. PubMed ID: 35610858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exceptional high thermal conductivity of inter-connected annular graphite structures.
    Zhuang S; Zhang F; Liu Y; Lu C
    Phys Chem Chem Phys; 2019 Dec; 21(45):25495-25505. PubMed ID: 31714563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Significant Reduction of Interfacial Thermal Resistance and Phonon Scattering in Graphene/Polyimide Thermally Conductive Composite Films for Thermal Management.
    Ruan K; Guo Y; Lu C; Shi X; Ma T; Zhang Y; Kong J; Gu J
    Research (Wash D C); 2021; 2021():8438614. PubMed ID: 33718876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Flexible Graphene Derivative Hybrid Film: An Outstanding Nonflammable Thermally Conductive yet Electrically Insulating Material for Efficient Thermal Management.
    Vu MC; Kim IH; Choi WK; Lim CS; Islam MA; Kim SR
    ACS Appl Mater Interfaces; 2020 Jun; 12(23):26413-26423. PubMed ID: 32469197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 2D-Topology-Seeded Graphitization for Highly Thermally Conductive Carbon Fibers.
    Ming X; Wei A; Liu Y; Peng L; Li P; Wang J; Liu S; Fang W; Wang Z; Peng H; Lin J; Huang H; Han Z; Luo S; Cao M; Wang B; Liu Z; Guo F; Xu Z; Gao C
    Adv Mater; 2022 Jul; 34(28):e2201867. PubMed ID: 35510758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lateral Heterostructure Formed by Highly Thermally Conductive Fluorinated Graphene for Efficient Device Thermal Management.
    Wang F; Liu Z; Li J; Huang J; Fang L; Wang X; Dai R; Li K; Zhang R; Yang X; Yue Y; Wang Z; Gao Y; Yang K; Zhang L; Xin G
    Adv Sci (Weinh); 2024 Jul; 11(25):e2401586. PubMed ID: 38666496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular Regulation of Flexible Composite Solid-Solid Phase Change Materials with Controllable Isotropic Thermal Conductivity for Thermal Energy Storage.
    Tian C; Yang Y; Liu Q; Bai Y; Zhao F; Huang L; Yang N; Cai X; Kong W
    ACS Appl Mater Interfaces; 2023 Mar; 15(10):13165-13175. PubMed ID: 36877699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of Hybrid Fillers for Improving the Through-Plane Heat Transport in Graphite Nanoplatelet-Based Thermal Interface Layers.
    Tian X; Itkis ME; Haddon RC
    Sci Rep; 2015 Aug; 5():13108. PubMed ID: 26279183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanocomposites of Rigid Polyurethane Foam and Graphene Nanoplates Obtained by Exfoliation of Natural Graphite in Polymeric 4,4'-Diphenylmethane Diisocyanate.
    Shin SR; Lee DS
    Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35215012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.