These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 33764990)

  • 1. Robustification of RosettaAntibody and Rosetta SnugDock.
    Jeliazkov JR; Frick R; Zhou J; Gray JJ
    PLoS One; 2021; 16(3):e0234282. PubMed ID: 33764990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RosettaCM for antibodies with very long HCDR3s and low template availability.
    Kodali P; Schoeder CT; Schmitz S; Crowe JE; Meiler J
    Proteins; 2021 Nov; 89(11):1458-1472. PubMed ID: 34176159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling and docking of antibody structures with Rosetta.
    Weitzner BD; Jeliazkov JR; Lyskov S; Marze N; Kuroda D; Frick R; Adolf-Bryfogle J; Biswas N; Dunbrack RL; Gray JJ
    Nat Protoc; 2017 Feb; 12(2):401-416. PubMed ID: 28125104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling Immunity with Rosetta: Methods for Antibody and Antigen Design.
    Schoeder CT; Schmitz S; Adolf-Bryfogle J; Sevy AM; Finn JA; Sauer MF; Bozhanova NG; Mueller BK; Sangha AK; Bonet J; Sheehan JH; Kuenze G; Marlow B; Smith ST; Woods H; Bender BJ; Martina CE; Del Alamo D; Kodali P; Gulsevin A; Schief WR; Correia BE; Crowe JE; Meiler J; Moretti R
    Biochemistry; 2021 Mar; 60(11):825-846. PubMed ID: 33705117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting antibody complementarity determining region structures without classification.
    Choi Y; Deane CM
    Mol Biosyst; 2011 Dec; 7(12):3327-34. PubMed ID: 22011953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SnugDock: paratope structural optimization during antibody-antigen docking compensates for errors in antibody homology models.
    Sircar A; Gray JJ
    PLoS Comput Biol; 2010 Jan; 6(1):e1000644. PubMed ID: 20098500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blind prediction performance of RosettaAntibody 3.0: grafting, relaxation, kinematic loop modeling, and full CDR optimization.
    Weitzner BD; Kuroda D; Marze N; Xu J; Gray JJ
    Proteins; 2014 Aug; 82(8):1611-23. PubMed ID: 24519881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward high-resolution homology modeling of antibody Fv regions and application to antibody-antigen docking.
    Sivasubramanian A; Sircar A; Chaudhury S; Gray JJ
    Proteins; 2009 Feb; 74(2):497-514. PubMed ID: 19062174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational Tools for Aiding Rational Antibody Design.
    Krawczyk K; Dunbar J; Deane CM
    Methods Mol Biol; 2017; 1529():399-416. PubMed ID: 27914064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RosettaAntibodyDesign (RAbD): A general framework for computational antibody design.
    Adolf-Bryfogle J; Kalyuzhniy O; Kubitz M; Weitzner BD; Hu X; Adachi Y; Schief WR; Dunbrack RL
    PLoS Comput Biol; 2018 Apr; 14(4):e1006112. PubMed ID: 29702641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RosettaAntibody: antibody variable region homology modeling server.
    Sircar A; Kim ET; Gray JJ
    Nucleic Acids Res; 2009 Jul; 37(Web Server issue):W474-9. PubMed ID: 19458157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of fully automated antibody homology modeling protocols in molecular operating environment.
    Maier JK; Labute P
    Proteins; 2014 Aug; 82(8):1599-610. PubMed ID: 24715627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-based cross-docking analysis of antibody-antigen interactions.
    Kilambi KP; Gray JJ
    Sci Rep; 2017 Aug; 7(1):8145. PubMed ID: 28811664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A computational approach for studying antibody-antigen interactions without prior structural information: the anti-testosterone binding antibody as a case study.
    Koivuniemi A; Takkinen K; Nevanen T
    Proteins; 2017 Feb; 85(2):322-331. PubMed ID: 27936519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-H3 CDR template selection in antibody modeling through machine learning.
    Long X; Jeliazkov JR; Gray JJ
    PeerJ; 2019; 7():e6179. PubMed ID: 30648015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repertoire Analysis of Antibody CDR-H3 Loops Suggests Affinity Maturation Does Not Typically Result in Rigidification.
    Jeliazkov JR; Sljoka A; Kuroda D; Tsuchimura N; Katoh N; Tsumoto K; Gray JJ
    Front Immunol; 2018; 9():413. PubMed ID: 29545810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antibody i-Patch prediction of the antibody binding site improves rigid local antibody-antigen docking.
    Krawczyk K; Baker T; Shi J; Deane CM
    Protein Eng Des Sel; 2013 Oct; 26(10):621-9. PubMed ID: 24006373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of antibody-antigen complex sequence-to-structure prediction methods and their systematic biases.
    McCoy KM; Ackerman ME; Grigoryan G
    Protein Sci; 2024 Sep; 33(9):e5127. PubMed ID: 39167052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated antibody structure prediction using Accelrys tools: results and best practices.
    Fasnacht M; Butenhof K; Goupil-Lamy A; Hernandez-Guzman F; Huang H; Yan L
    Proteins; 2014 Aug; 82(8):1583-98. PubMed ID: 24833271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An expanded benchmark for antibody-antigen docking and affinity prediction reveals insights into antibody recognition determinants.
    Guest JD; Vreven T; Zhou J; Moal I; Jeliazkov JR; Gray JJ; Weng Z; Pierce BG
    Structure; 2021 Jun; 29(6):606-621.e5. PubMed ID: 33539768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.