These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 33765007)

  • 1. Analysis of spiking synchrony in visual cortex reveals distinct types of top-down modulation signals for spatial and object-based attention.
    Wagatsuma N; Hu B; von der Heydt R; Niebur E
    PLoS Comput Biol; 2021 Mar; 17(3):e1008829. PubMed ID: 33765007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spike synchrony reveals emergence of proto-objects in visual cortex.
    Martin AB; von der Heydt R
    J Neurosci; 2015 Apr; 35(17):6860-70. PubMed ID: 25926461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spike synchrony generated by modulatory common input through NMDA-type synapses.
    Wagatsuma N; von der Heydt R; Niebur E
    J Neurophysiol; 2016 Sep; 116(3):1418-33. PubMed ID: 27486111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disinhibitory circuit mediated by connections from vasoactive intestinal polypeptide to somatostatin interneurons underlies the paradoxical decrease in spike synchrony with increased border ownership selective neuron firing rate.
    Wagatsuma N; Shimomura H; Nobukawa S
    Front Comput Neurosci; 2022; 16():988715. PubMed ID: 36405781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Columnar processing of border ownership in primate visual cortex.
    Franken TP; Reynolds JH
    Elife; 2021 Nov; 10():. PubMed ID: 34845986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A recurrent neural model for proto-object based contour integration and figure-ground segregation.
    Hu B; Niebur E
    J Comput Neurosci; 2017 Dec; 43(3):227-242. PubMed ID: 28924628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Feedback Model of Attention Explains the Diverse Effects of Attention on Neural Firing Rates and Receptive Field Structure.
    Miconi T; VanRullen R
    PLoS Comput Biol; 2016 Feb; 12(2):e1004770. PubMed ID: 26890584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Figure-Ground Organization in Natural Scenes: Performance of a Recurrent Neural Model Compared with Neurons of Area V2.
    Hu B; von der Heydt R; Niebur E
    eNeuro; 2019; 6(3):. PubMed ID: 31167850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A neural model of figure-ground organization.
    Craft E; Schütze H; Niebur E; von der Heydt R
    J Neurophysiol; 2007 Jun; 97(6):4310-26. PubMed ID: 17442769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibitory synchrony as a mechanism for attentional gain modulation.
    Tiesinga PH; Fellous JM; Salinas E; José JV; Sejnowski TJ
    J Physiol Paris; 2004; 98(4-6):296-314. PubMed ID: 16274973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Figure-ground organization and the emergence of proto-objects in the visual cortex.
    von der Heydt R
    Front Psychol; 2015; 6():1695. PubMed ID: 26579062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Grouping cells in primate visual cortex.
    Franken TP; Reynolds JH
    bioRxiv; 2024 Jan; ():. PubMed ID: 38293172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Different types of signal coupling in the visual cortex related to neural mechanisms of associative processing and perception.
    Eckhorn R; Gail AM; Bruns A; Gabriel A; Al-Shaikhli B; Saam M
    IEEE Trans Neural Netw; 2004 Sep; 15(5):1039-52. PubMed ID: 15484881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial and feature-based attention in a layered cortical microcircuit model.
    Wagatsuma N; Potjans TC; Diesmann M; Sakai K; Fukai T
    PLoS One; 2013; 8(12):e80788. PubMed ID: 24324628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attention in natural scenes: Neurophysiological and computational bases.
    Rolls ET; Deco G
    Neural Netw; 2006 Nov; 19(9):1383-94. PubMed ID: 17011749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synchrony and covariation of firing rates in the primary visual cortex during contour grouping.
    Roelfsema PR; Lamme VA; Spekreijse H
    Nat Neurosci; 2004 Sep; 7(9):982-91. PubMed ID: 15322549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Top-down inputs enhance orientation selectivity in neurons of the primary visual cortex during perceptual learning.
    Moldakarimov S; Bazhenov M; Sejnowski TJ
    PLoS Comput Biol; 2014 Aug; 10(8):e1003770. PubMed ID: 25121603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Figure-ground mechanisms provide structure for selective attention.
    Qiu FT; Sugihara T; von der Heydt R
    Nat Neurosci; 2007 Nov; 10(11):1492-9. PubMed ID: 17922006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced Spatial Resolution During Locomotion and Heightened Attention in Mouse Primary Visual Cortex.
    Mineault PJ; Tring E; Trachtenberg JT; Ringach DL
    J Neurosci; 2016 Jun; 36(24):6382-92. PubMed ID: 27307228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning and spontaneous spike time synchrony share a common structure in macaque inferior temporal cortex.
    Lin CP; Chen YP; Hung CP
    J Neurophysiol; 2014 Aug; 112(4):856-69. PubMed ID: 24848472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.