BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 33765217)

  • 1. Phytochemicals from Ayurvedic plants as potential medicaments for ovarian cancer: an in silico analysis.
    Qazi S; Raza K
    J Mol Model; 2021 Mar; 27(4):114. PubMed ID: 33765217
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Qazi S; Raza K
    J Integr Bioinform; 2021 Nov; 18(4):. PubMed ID: 34788504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utilizing Ayurvedic literature for the identification of novel phytochemical inhibitors of botulinum neurotoxin A.
    Yalamanchili C; Manda VK; Chittiboyina AG; Guernieri RL; Harrell WA; Webb RP; Smith LA; Khan IA
    J Ethnopharmacol; 2017 Feb; 197():211-217. PubMed ID: 27469199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deciphering the multi-scale mechanisms of Tephrosia purpurea against polycystic ovarian syndrome (PCOS) and its major psychiatric comorbidities: Studies from network pharmacological perspective.
    Choudhary N; Choudhary S; Kumar A; Singh V
    Gene; 2021 Mar; 773():145385. PubMed ID: 33383117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Silico Screening for Anti-inflammatory Bioactive Molecules from Ayurvedic Decoction, Balaguluchyadi kashayam.
    S J RD; Kumar B P
    Curr Comput Aided Drug Des; 2020; 16(4):435-450. PubMed ID: 31749431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular modelling, docking and network analysis of phytochemicals from Haritaki churna: role of protein cross-talks for their action.
    Khan MRUZ; Trivedi V
    J Biomol Struct Dyn; 2024 May; 42(8):4297-4312. PubMed ID: 37288779
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Das SK; Deka SJ; Paul D; Gupta DD; Das TJ; Maravi DK; Tag H; Hui PK
    J Biomol Struct Dyn; 2022 Sep; 40(15):6857-6867. PubMed ID: 33625319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining empirical knowledge, in silico molecular docking and ADMET profiling to identify therapeutic phytochemicals from Brucea antidysentrica for acute myeloid leukemia.
    Bultum LE; Tolossa GB; Lee D
    PLoS One; 2022; 17(7):e0270050. PubMed ID: 35895695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of tea (Camellia sinensis L.) phytochemicals as multi-disease modulators, a multidimensional in silico strategy with the combinations of network pharmacology, pharmacophore analysis, statistics and molecular docking.
    Nag A; Dhull N; Gupta A
    Mol Divers; 2023 Feb; 27(1):487-509. PubMed ID: 35536529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of potential anticancer phytochemicals against colorectal cancer by structure-based docking studies.
    Qawoogha SS; Shahiwala A
    J Recept Signal Transduct Res; 2020 Feb; 40(1):67-76. PubMed ID: 31971455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pharmacoinformatics and molecular dynamics simulation-based phytochemical screening of neem plant (Azadiractha indica) against human cancer by targeting MCM7 protein.
    Ahammad F; Alam R; Mahmud R; Akhter S; Talukder EK; Tonmoy AM; Fahim S; Al-Ghamdi K; Samad A; Qadri I
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33834183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational investigation of phytochemicals from
    Ahmad I; Kumar D; Patel H
    J Biomol Struct Dyn; 2022 Oct; 40(17):7991-8003. PubMed ID: 33970806
    [No Abstract]   [Full Text] [Related]  

  • 13. Ancient-modern concordance in Ayurvedic plants: some examples.
    Dev S
    Environ Health Perspect; 1999 Oct; 107(10):783-9. PubMed ID: 10504143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Computer evaluation of hidden potential of phytochemicals of medicinal plants of the traditional Indian ayurvedic medicine].
    Lagunin AA; Druzhilovsky DS; Rudik AV; Filimonov DA; Gawande D; Suresh K; Goel R; Poroikov VV
    Biomed Khim; 2015; 61(2):286-97. PubMed ID: 25978395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In silico molecular docking and physicochemical property studies on effective phytochemicals targeting GPR116 for breast cancer treatment.
    Muthiah I; Rajendran K; Dhanaraj P
    Mol Cell Biochem; 2021 Feb; 476(2):883-896. PubMed ID: 33106912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cedrus deodara (Roxb. ex D.Don) G.Don bark fraction ameliorates metabolic, endocrine and ovarian dynamics in rats experiencing polycystic ovarian syndrome.
    Bisht A; Gururani R; Jain S; Shukla R; Dwivedi J; Sharma S
    J Ethnopharmacol; 2023 Apr; 306():116206. PubMed ID: 36690306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of Potential IKK-β Inhibitors using Molecular Docking and Molecular Dynamics Techniques for their Anti-cancer Potential.
    Singh SP; Hussain I; Konwar BK; Deka RC; Singh CB
    Curr Comput Aided Drug Des; 2021; 17(1):83-94. PubMed ID: 31899679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Asparagus racemosus: a review on its phytochemical and therapeutic potential.
    Singh R
    Nat Prod Res; 2016 Sep; 30(17):1896-908. PubMed ID: 26463825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular docking and molecular dynamic studies: screening of phytochemicals against EGFR, HER2, estrogen and NF-KB receptors for their potential use in breast cancer.
    Purawarga Matada GS; Dhiwar PS; Abbas N; Singh E; Ghara A; Das A; Bhargava SV
    J Biomol Struct Dyn; 2022 Aug; 40(13):6183-6192. PubMed ID: 33525984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Silico Inhibition of BACE-1 by Selective Phytochemicals as Novel Potential Inhibitors: Molecular Docking and DFT Studies.
    Arif N; Subhani A; Hussain W; Rasool N
    Curr Drug Discov Technol; 2020; 17(3):397-411. PubMed ID: 30767744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.