BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 33765523)

  • 1. Quantifying the benefits of in-time and in-place responses to remediate acute LNAPL release incidents.
    Sookhak Lari K; King A; Rayner JL; Davis GB
    J Environ Manage; 2021 Jun; 287():112356. PubMed ID: 33765523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An approach to optimize the location of LNAPL recovery wells using the concept of a LNAPL specific yield.
    Ebrahimi F; Lenhard RJ; Nakhaei M; Nassery HR
    Environ Sci Pollut Res Int; 2019 Oct; 26(28):28714-28724. PubMed ID: 31376125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling dissolution and volatilization of LNAPL sources migrating on the groundwater table.
    Kim J; Corapcioglu MY
    J Contam Hydrol; 2003 Aug; 65(1-2):137-58. PubMed ID: 12855205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sustainable risk-based analysis towards remediation of an aquifer impacted by crude oil spills.
    Al-Busaidi Z; Baawain M; Sana A; Ebrahimi A; Omidvarborna H
    J Environ Manage; 2019 Oct; 247():333-341. PubMed ID: 31252232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards characterizing LNAPL remediation endpoints.
    Sookhak Lari K; Rayner JL; Davis GB
    J Environ Manage; 2018 Oct; 224():97-105. PubMed ID: 30031923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of factors causing lateral migration of light non-aqueous phase liquids (LNAPLs) in onshore oil spill accidents.
    Waqar A
    Environ Sci Pollut Res Int; 2024 Feb; 31(7):10853-10873. PubMed ID: 38214856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Persistence of LNAPL sources: relationship between risk reduction and LNAPL recovery.
    Huntley D; Beckett GD
    J Contam Hydrol; 2002 Nov; 59(1-2):3-26. PubMed ID: 12683637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of specific LNAPL volumes in soils having a multimodal pore-size distribution.
    Alfaro Soto MA; Lenhard R; Chang HK; van Genuchten MT
    J Environ Manage; 2019 May; 237():576-584. PubMed ID: 30826639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Field-scale multi-phase LNAPL remediation: Validating a new computational framework against sequential field pilot trials.
    Sookhak Lari K; Johnston CD; Rayner JL; Davis GB
    J Hazard Mater; 2018 Mar; 345():87-96. PubMed ID: 29131986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LNAPL source zone delineation using soil gases in a heterogeneous silty-sand aquifer.
    Cohen GJV; Jousse F; Luze N; Höhener P; Atteia O
    J Contam Hydrol; 2016 Sep; 192():20-34. PubMed ID: 27341018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A practical tool for estimating subsurface LNAPL distributions and transmissivity using current and historical fluid levels in groundwater wells: Effects of entrapped and residual LNAPL.
    Lenhard RJ; Rayner JL; Davis GB
    J Contam Hydrol; 2017 Oct; 205():1-11. PubMed ID: 28797669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A numerical model to optimize LNAPL remediation by multi-phase extraction.
    Qi S; Luo J; O'Connor D; Wang Y; Hou D
    Sci Total Environ; 2020 May; 718():137309. PubMed ID: 32087590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using groundwater monitoring wells for rapid application of soil gas radon deficit technique to evaluate residual LNAPL.
    Cecconi A; Verginelli I; Baciocchi R; Lanari C; Villani F; Bonfedi G
    J Contam Hydrol; 2023 Sep; 258():104241. PubMed ID: 37690392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An analytical model for predicting LNAPL distribution and recovery from multi-layered soils.
    Jeong J; Charbeneau RJ
    J Contam Hydrol; 2014 Jan; 156():52-61. PubMed ID: 24262305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surfactant flooding makes a comeback: Results of a full-scale, field implementation to recover mobilized NAPL.
    Sharma P; Kostarelos K; Lenschow S; Christensen A; de Blanc PC
    J Contam Hydrol; 2020 Mar; 230():103602. PubMed ID: 32005455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LNAPL transmissivity as a remediation metric in complex sites under water table fluctuations.
    Gatsios E; García-Rincón J; Rayner JL; McLaughlan RG; Davis GB
    J Environ Manage; 2018 Jun; 215():40-48. PubMed ID: 29554626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An assessment of subsurface contamination of an urban coastal aquifer due to oil spill.
    Nambi IM; Rajasekhar B; Loganathan V; RaviKrishna R
    Environ Monit Assess; 2017 Apr; 189(4):148. PubMed ID: 28275982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An environmental screening model to assess the consequences to soil and groundwater from railroad-tank-car spills of light non-aqueous phase liquids.
    Yoon H; Werth CJ; Barkan CP; Schaeffer DJ; Anand P
    J Hazard Mater; 2009 Jun; 165(1-3):332-44. PubMed ID: 19036513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A field-scale remediation of residual light non-aqueous phase liquid (LNAPL): chemical enhancers for pump and treat.
    Ciampi P; Esposito C; Cassiani G; Deidda GP; Rizzetto P; Papini MP
    Environ Sci Pollut Res Int; 2021 Jul; 28(26):35286-35296. PubMed ID: 34085199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the LNAPL Migration Process in the Vadose Zone under Two Different Media Conditions.
    Zuo R; Zhao X; Yang J; Pan M; Xue Z; Gao X; Wang J; Teng Y
    Int J Environ Res Public Health; 2021 Oct; 18(21):. PubMed ID: 34769594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.