BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 33765766)

  • 1. Global Protease Activity Profiling Identifies HER2-Driven Proteolysis in Breast Cancer.
    Salcedo EC; Winter MB; Khuri N; Knudsen GM; Sali A; Craik CS
    ACS Chem Biol; 2021 Apr; 16(4):712-723. PubMed ID: 33765766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overview of transcriptomic analysis of all human proteases, non-proteolytic homologs and inhibitors: Organ, tissue and ovarian cancer cell line expression profiling of the human protease degradome by the CLIP-CHIP™ DNA microarray.
    Kappelhoff R; Puente XS; Wilson CH; Seth A; López-Otín C; Overall CM
    Biochim Biophys Acta Mol Cell Res; 2017 Nov; 1864(11 Pt B):2210-2219. PubMed ID: 28797648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protease activity at invadopodial focal digestive areas is dependent on NHE1-driven acidic pHe.
    Greco MR; Antelmi E; Busco G; Guerra L; Rubino R; Casavola V; Reshkin SJ; Cardone RA
    Oncol Rep; 2014 Feb; 31(2):940-6. PubMed ID: 24337203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Breast cancer expressing the activated HER2/neu is sensitive to gefitinib in vitro and in vivo and acquires resistance through a novel point mutation in the HER2/neu.
    Piechocki MP; Yoo GH; Dibbley SK; Lonardo F
    Cancer Res; 2007 Jul; 67(14):6825-43. PubMed ID: 17638894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of ADAMTS1 as a tumor suppressor gene in human breast carcinoma. Linking its tumor inhibitory properties to its proteolytic activity on nidogen-1 and nidogen-2.
    Martino-Echarri E; Fernández-Rodríguez R; Rodríguez-Baena FJ; Barrientos-Durán A; Torres-Collado AX; Plaza-Calonge Mdel C; Amador-Cubero S; Cortés J; Reynolds LE; Hodivala-Dilke KM; Rodríguez-Manzaneque JC
    Int J Cancer; 2013 Nov; 133(10):2315-24. PubMed ID: 23681936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteolysis-a characteristic of tumor-initiating cells in murine metastatic breast cancer.
    Hillebrand LE; Bengsch F; Hochrein J; Hülsdünker J; Bender J; Follo M; Busch H; Boerries M; Reinheckel T
    Oncotarget; 2016 Sep; 7(36):58244-58260. PubMed ID: 27542270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hu/Mu ProtIn oligonucleotide microarray: dual-species array for profiling protease and protease inhibitor gene expression in tumors and their microenvironment.
    Schwartz DR; Moin K; Yao B; Matrisian LM; Coussens LM; Bugge TH; Fingleton B; Acuff HB; Sinnamon M; Nassar H; Platts AE; Krawetz SA; Linebaugh BE; Sloane BF
    Mol Cancer Res; 2007 May; 5(5):443-54. PubMed ID: 17510311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Junctional adhesion molecule-A is co-expressed with HER2 in breast tumors and acts as a novel regulator of HER2 protein degradation and signaling.
    Brennan K; McSherry EA; Hudson L; Kay EW; Hill AD; Young LS; Hopkins AM
    Oncogene; 2013 May; 32(22):2799-804. PubMed ID: 22751120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antitumoral actions of the anti-obesity drug orlistat (XenicalTM) in breast cancer cells: blockade of cell cycle progression, promotion of apoptotic cell death and PEA3-mediated transcriptional repression of Her2/neu (erbB-2) oncogene.
    Menendez JA; Vellon L; Lupu R
    Ann Oncol; 2005 Aug; 16(8):1253-67. PubMed ID: 15870086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Circulating Peptidome and Tumor-Resident Proteolysis.
    Fan J; Ning B; Lyon CJ; Hu TY
    Enzymes; 2017; 42():1-25. PubMed ID: 29054266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring protease activity in biological tissues using antibody prodrugs as sensing probes.
    Vasiljeva O; Menendez E; Nguyen M; Craik CS; Michael Kavanaugh W
    Sci Rep; 2020 Apr; 10(1):5894. PubMed ID: 32246002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prognostic and functional role of subtype-specific tumor-stroma interaction in breast cancer.
    Merlino G; Miodini P; Callari M; D'Aiuto F; Cappelletti V; Daidone MG
    Mol Oncol; 2017 Oct; 11(10):1399-1412. PubMed ID: 28672102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteolysis to Identify Protease Substrates: Cleave to Decipher.
    Bhagwat SR; Hajela K; Kumar A
    Proteomics; 2018 Jul; 18(13):e1800011. PubMed ID: 29710386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Absence of integrin α3β1 promotes the progression of HER2-driven breast cancer in vivo.
    Ramovs V; Secades P; Song JY; Thijssen B; Kreft M; Sonnenberg A
    Breast Cancer Res; 2019 May; 21(1):63. PubMed ID: 31101121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A potent, proteolysis-resistant inhibitor of kallikrein-related peptidase 6 (KLK6) for cancer therapy, developed by combinatorial engineering.
    Sananes A; Cohen I; Shahar A; Hockla A; De Vita E; Miller AK; Radisky ES; Papo N
    J Biol Chem; 2018 Aug; 293(33):12663-12680. PubMed ID: 29934309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteases: Pivot Points in Functional Proteomics.
    Verhamme IM; Leonard SE; Perkins RC
    Methods Mol Biol; 2019; 1871():313-392. PubMed ID: 30276748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HER2 (erbB-2)-targeted effects of the omega-3 polyunsaturated fatty acid, alpha-linolenic acid (ALA; 18:3n-3), in breast cancer cells: the "fat features" of the "Mediterranean diet" as an "anti-HER2 cocktail".
    Menéndez JA; Vázquez-Martín A; Ropero S; Colomer R; Lupu R
    Clin Transl Oncol; 2006 Nov; 8(11):812-20. PubMed ID: 17134970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a test that measures real-time HER2 signaling function in live breast cancer cell lines and primary cells.
    Huang Y; Burns DJ; Rich BE; MacNeil IA; Dandapat A; Soltani SM; Myhre S; Sullivan BF; Lange CA; Furcht LT; Laing LG
    BMC Cancer; 2017 Mar; 17(1):199. PubMed ID: 28302091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PGC-1β regulates HER2-overexpressing breast cancer cells proliferation by metabolic and redox pathways.
    Victorino VJ; Barroso WA; Assunção AK; Cury V; Jeremias IC; Petroni R; Chausse B; Ariga SK; Herrera AC; Panis C; Lima TM; Souza HP
    Tumour Biol; 2016 May; 37(5):6035-44. PubMed ID: 26602383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of proteolysis on cancer stem cell functions.
    Hillebrand LE; Reinheckel T
    Biochimie; 2019 Nov; 166():214-222. PubMed ID: 30876968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.