These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 33765808)

  • 1. Acoustics modelling of open-cell foam materials from microstructure and constitutive properties.
    Semeniuk BP; Lundberg E; Göransson P
    J Acoust Soc Am; 2021 Mar; 149(3):2016. PubMed ID: 33765808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic equations of a transversely isotropic, highly porous, fibrous material including oscillatory heat transfer effects.
    Semeniuk BP; Göransson P; Dazel O
    J Acoust Soc Am; 2019 Oct; 146(4):2540. PubMed ID: 31671999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microstructure based estimation of the dynamic drag impedance of lightweight fibrous materials.
    Semeniuk BP; Göransson P
    J Acoust Soc Am; 2017 Mar; 141(3):1360. PubMed ID: 28372062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of the full anisotropic flow resistivity tensor for multiple glass wool and melamine foam samples.
    Van der Kelen C; Göransson P
    J Acoust Soc Am; 2013 Dec; 134(6):4659. PubMed ID: 25669278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards an acoustic model-based poroelastic imaging method: I. Theoretical foundation.
    Berry GP; Bamber JC; Armstrong CG; Miller NR; Barbone PE
    Ultrasound Med Biol; 2006 Apr; 32(4):547-67. PubMed ID: 16616601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acoustics of monodisperse open-cell foam: An experimental and numerical parametric study.
    Langlois V; Kaddami A; Pitois O; Perrot C
    J Acoust Soc Am; 2020 Sep; 148(3):1767. PubMed ID: 33003872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Discussion on the Interpretation of the Darcy Equation in Case of Open-Cell Metal Foam Based on Numerical Simulations.
    De Schampheleire S; De Kerpel K; Ameel B; De Jaeger P; Bagci O; De Paepe M
    Materials (Basel); 2016 May; 9(6):. PubMed ID: 28773532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustic and vibrational damping in porous solids.
    Göransson P
    Philos Trans A Math Phys Eng Sci; 2006 Jan; 364(1838):89-108. PubMed ID: 18272454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measuring permeability of porous materials at low frequency range via acoustic transmitted waves.
    Fellah ZE; Fellah M; Mitri FG; Sebaa N; Depollier C; Lauriks W
    Rev Sci Instrum; 2007 Nov; 78(11):114902. PubMed ID: 18052497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A finite difference method for a coupled model of wave propagation in poroelastic materials.
    Zhang Y; Song L; Deffenbaugh M; Toksöz MN
    J Acoust Soc Am; 2010 May; 127(5):2847-55. PubMed ID: 21117735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulating the acoustic response of cavities to improve microphone array measurements in closed test section wind tunnels.
    VanDercreek C; Avallone F; Ragni D; Snellen M
    J Acoust Soc Am; 2022 Jan; 151(1):322. PubMed ID: 35105038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of thermal and viscous boundary layers in acoustic absorption by metallic foam.
    Cops MJ; McDaniel JG; Magliula EA; Bamford DJ
    J Acoust Soc Am; 2019 Jul; 146(1):649. PubMed ID: 31370580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A graphene oxide and functionalized carbon nanotube based semi-open cellular network for sound absorption.
    Liu L; Chen Y; Liu H; Rehman HU; Chen C; Kang H; Li H
    Soft Matter; 2019 Mar; 15(10):2269-2276. PubMed ID: 30768091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermoacoustic properties of fibrous materials.
    Jensen C; Raspet R
    J Acoust Soc Am; 2010 Jun; 127(6):3470-84. PubMed ID: 20550247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Architected cellular ceramics with tailored stiffness via direct foam writing.
    Muth JT; Dixon PG; Woish L; Gibson LJ; Lewis JA
    Proc Natl Acad Sci U S A; 2017 Feb; 114(8):1832-1837. PubMed ID: 28179570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mixture approach to the acoustic properties of a macroscopically inhomogeneous porous aluminum in the equivalent fluid approximation.
    Sacristan CJ; Dupont T; Sicot O; Leclaire P; Verdière K; Panneton R; Gong XL
    J Acoust Soc Am; 2016 Oct; 140(4):2847. PubMed ID: 27794315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling compressive behavior of open-cell polymerized high internal phase emulsions: effects of density and morphology.
    Kravchenko OG; Gedler G; Kravchenko SG; Feke DL; Manas-Zloczower I
    Soft Matter; 2018 Feb; 14(9):1637-1646. PubMed ID: 29411831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical properties of open-cell foam synthetic thoracic vertebrae.
    Johnson AE; Keller TS
    J Mater Sci Mater Med; 2008 Mar; 19(3):1317-23. PubMed ID: 17882383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustical determination of the parameters governing thermal dissipation in porous media.
    Olny X; Panneton R
    J Acoust Soc Am; 2008 Feb; 123(2):814-24. PubMed ID: 18247886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental and numerical investigations on melamine wedges.
    Schneider S
    J Acoust Soc Am; 2008 Sep; 124(3):1568-76. PubMed ID: 19045648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.