These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 33765808)
1. Acoustics modelling of open-cell foam materials from microstructure and constitutive properties. Semeniuk BP; Lundberg E; Göransson P J Acoust Soc Am; 2021 Mar; 149(3):2016. PubMed ID: 33765808 [TBL] [Abstract][Full Text] [Related]
2. Dynamic equations of a transversely isotropic, highly porous, fibrous material including oscillatory heat transfer effects. Semeniuk BP; Göransson P; Dazel O J Acoust Soc Am; 2019 Oct; 146(4):2540. PubMed ID: 31671999 [TBL] [Abstract][Full Text] [Related]
3. Microstructure based estimation of the dynamic drag impedance of lightweight fibrous materials. Semeniuk BP; Göransson P J Acoust Soc Am; 2017 Mar; 141(3):1360. PubMed ID: 28372062 [TBL] [Abstract][Full Text] [Related]
4. Identification of the full anisotropic flow resistivity tensor for multiple glass wool and melamine foam samples. Van der Kelen C; Göransson P J Acoust Soc Am; 2013 Dec; 134(6):4659. PubMed ID: 25669278 [TBL] [Abstract][Full Text] [Related]
5. Towards an acoustic model-based poroelastic imaging method: I. Theoretical foundation. Berry GP; Bamber JC; Armstrong CG; Miller NR; Barbone PE Ultrasound Med Biol; 2006 Apr; 32(4):547-67. PubMed ID: 16616601 [TBL] [Abstract][Full Text] [Related]
6. Acoustics of monodisperse open-cell foam: An experimental and numerical parametric study. Langlois V; Kaddami A; Pitois O; Perrot C J Acoust Soc Am; 2020 Sep; 148(3):1767. PubMed ID: 33003872 [TBL] [Abstract][Full Text] [Related]
7. A Discussion on the Interpretation of the Darcy Equation in Case of Open-Cell Metal Foam Based on Numerical Simulations. De Schampheleire S; De Kerpel K; Ameel B; De Jaeger P; Bagci O; De Paepe M Materials (Basel); 2016 May; 9(6):. PubMed ID: 28773532 [TBL] [Abstract][Full Text] [Related]
8. Acoustic and vibrational damping in porous solids. Göransson P Philos Trans A Math Phys Eng Sci; 2006 Jan; 364(1838):89-108. PubMed ID: 18272454 [TBL] [Abstract][Full Text] [Related]
9. Measuring permeability of porous materials at low frequency range via acoustic transmitted waves. Fellah ZE; Fellah M; Mitri FG; Sebaa N; Depollier C; Lauriks W Rev Sci Instrum; 2007 Nov; 78(11):114902. PubMed ID: 18052497 [TBL] [Abstract][Full Text] [Related]
10. A finite difference method for a coupled model of wave propagation in poroelastic materials. Zhang Y; Song L; Deffenbaugh M; Toksöz MN J Acoust Soc Am; 2010 May; 127(5):2847-55. PubMed ID: 21117735 [TBL] [Abstract][Full Text] [Related]
11. Simulating the acoustic response of cavities to improve microphone array measurements in closed test section wind tunnels. VanDercreek C; Avallone F; Ragni D; Snellen M J Acoust Soc Am; 2022 Jan; 151(1):322. PubMed ID: 35105038 [TBL] [Abstract][Full Text] [Related]
12. Analysis of thermal and viscous boundary layers in acoustic absorption by metallic foam. Cops MJ; McDaniel JG; Magliula EA; Bamford DJ J Acoust Soc Am; 2019 Jul; 146(1):649. PubMed ID: 31370580 [TBL] [Abstract][Full Text] [Related]
13. A graphene oxide and functionalized carbon nanotube based semi-open cellular network for sound absorption. Liu L; Chen Y; Liu H; Rehman HU; Chen C; Kang H; Li H Soft Matter; 2019 Mar; 15(10):2269-2276. PubMed ID: 30768091 [TBL] [Abstract][Full Text] [Related]