These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

440 related articles for article (PubMed ID: 33766379)

  • 21. Mussel-Inspired Flexible, Wearable, and Self-Adhesive Conductive Hydrogels for Strain Sensors.
    Lv R; Bei Z; Huang Y; Chen Y; Zheng Z; You Q; Zhu C; Cao Y
    Macromol Rapid Commun; 2020 Jan; 41(2):e1900450. PubMed ID: 31778252
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Highly stretchable, self-healing, and degradable ionic conductive cellulose hydrogel for human motion monitoring.
    Li X; Ma Y; Li D; Lu S; Li Y; Li Z
    Int J Biol Macromol; 2022 Dec; 223(Pt A):1530-1538. PubMed ID: 36402382
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biomimetic epidermal sensors assembled from polydopamine-modified reduced graphene oxide/polyvinyl alcohol hydrogels for the real-time monitoring of human motions.
    Zhang H; Ren P; Yang F; Chen J; Wang C; Zhou Y; Fu J
    J Mater Chem B; 2020 Dec; 8(46):10549-10558. PubMed ID: 33125024
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lignin-silver triggered multifunctional conductive hydrogels for skinlike sensor applications.
    Hao Y; Wang C; Jiang W; Yoo CG; Ji X; Yang G; Chen J; Lyu G
    Int J Biol Macromol; 2022 Nov; 221():1282-1293. PubMed ID: 36113594
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mussel-inspired adhesive and conductive hydrogel with tunable mechanical properties for wearable strain sensors.
    Zhang X; Chen J; He J; Bai Y; Zeng H
    J Colloid Interface Sci; 2021 Mar; 585():420-432. PubMed ID: 33268058
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A skin-inspired biomimetic strategy to fabricate cellulose enhanced antibacterial hydrogels as strain sensors.
    Jian J; Xie Y; Gao S; Sun Y; Lai C; Wang J; Wang C; Chu F; Zhang D
    Carbohydr Polym; 2022 Oct; 294():119760. PubMed ID: 35868784
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Self-recovery magnetic hydrogel with high strength and toughness using nanofibrillated cellulose as a dispersing agent and filler.
    Wang Y; Zhang J; Qiu C; Li J; Cao Z; Ma C; Zheng J; Huang G
    Carbohydr Polym; 2018 Sep; 196():82-91. PubMed ID: 29891328
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A self-healing, recyclable and conductive gelatin/nanofibrillated cellulose/Fe
    Fu H; Wang B; Li J; Xu J; Li J; Zeng J; Gao W; Chen K
    Mater Horiz; 2022 May; 9(5):1412-1421. PubMed ID: 35322839
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ionically Conductive Hydrogel with Fast Self-Recovery and Low Residual Strain as Strain and Pressure Sensors.
    Sun X; Yao F; Wang C; Qin Z; Zhang H; Yu Q; Zhang H; Dong X; Wei Y; Li J
    Macromol Rapid Commun; 2020 Jul; 41(13):e2000185. PubMed ID: 32500629
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Highly stretchable, tough and conductive chitin nanofiber composite hydrogel as a wearable sensor.
    Li X; Jiang L; Yan M; Bi H; Wang Q
    Int J Biol Macromol; 2023 Jul; 242(Pt 1):124780. PubMed ID: 37172700
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antibacterial and hemostatic hydrogel via nanocomposite from cellulose nanofibers.
    Liu R; Dai L; Si C; Zeng Z
    Carbohydr Polym; 2018 Sep; 195():63-70. PubMed ID: 29805020
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Strong, conductive, and freezing-tolerant polyacrylamide/PEDOT:PSS/cellulose nanofibrils hydrogels for wearable strain sensors.
    Zhang M; Wang Y; Liu K; Liu Y; Xu T; Du H; Si C
    Carbohydr Polym; 2023 Apr; 305():120567. PubMed ID: 36737205
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recent Progress in Natural Biopolymers Conductive Hydrogels for Flexible Wearable Sensors and Energy Devices: Materials, Structures, and Performance.
    Cui C; Fu Q; Meng L; Hao S; Dai R; Yang J
    ACS Appl Bio Mater; 2021 Jan; 4(1):85-121. PubMed ID: 35014278
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chitosan-driven skin-attachable hydrogel sensors toward human motion and physiological signal monitoring.
    Jin R; Xu J; Duan L; Gao G
    Carbohydr Polym; 2021 Sep; 268():118240. PubMed ID: 34127222
    [TBL] [Abstract][Full Text] [Related]  

  • 35. NIR-responsive multi-healing HMPAM/dextran/AgNWs hydrogel sensor with recoverable mechanics and conductivity for human-machine interaction.
    Ding J; Qiao Z; Zhang Y; Wei D; Chen S; Tang J; Chen L; Wei D; Sun J; Fan H
    Carbohydr Polym; 2020 Nov; 247():116686. PubMed ID: 32829814
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preparation of stretchable and self-healable dual ionically cross-linked hydrogel based on chitosan/polyacrylic acid with anti-freezing property for multi-model flexible sensing and detection.
    Liang Y; Shen Y; Sun X; Liang H
    Int J Biol Macromol; 2021 Dec; 193(Pt A):629-637. PubMed ID: 34717973
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Skin-Inspired Multifunctional Luminescent Hydrogel Containing Layered Rare-Earth Hydroxide with 3D Printability for Human Motion Sensing.
    Ren Y; Feng J
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):6797-6805. PubMed ID: 31955579
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High performance cellulose nanocomposites: comparing the reinforcing ability of bacterial cellulose and nanofibrillated cellulose.
    Lee KY; Tammelin T; Schulfter K; Kiiskinen H; Samela J; Bismarck A
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):4078-86. PubMed ID: 22839594
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-Strength, Self-Adhesive, and Strain-Sensitive Chitosan/Poly(acrylic acid) Double-Network Nanocomposite Hydrogels Fabricated by Salt-Soaking Strategy for Flexible Sensors.
    Cui C; Shao C; Meng L; Yang J
    ACS Appl Mater Interfaces; 2019 Oct; 11(42):39228-39237. PubMed ID: 31550132
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanocellulose-mediated conductive hydrogels with NIR photoresponse and fatigue resistance for multifunctional wearable sensors.
    Sang C; Wang S; Jin X; Cheng X; Xiao H; Yue Y; Han J
    Carbohydr Polym; 2024 Jun; 333():121947. PubMed ID: 38494214
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.