These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
259 related articles for article (PubMed ID: 33766588)
1. Wearable lignin-based hydrogel electronics: A mini-review. Wang Q; Guo J; Lu X; Ma X; Cao S; Pan X; Ni Y Int J Biol Macromol; 2021 Jun; 181():45-50. PubMed ID: 33766588 [TBL] [Abstract][Full Text] [Related]
2. Recent advances in lignosulfonate filled hydrogel for flexible wearable electronics: A mini review. Wang Y; Liu H; Ji X; Wang Q; Tian Z; Liu S Int J Biol Macromol; 2022 Jul; 212():393-401. PubMed ID: 35618087 [TBL] [Abstract][Full Text] [Related]
3. A self-healing, long-lasting adhesive, lignin-based polyvinyl alcohol organo-hydrogel for strain-sensing applications. An H; Yu P; Pan J; Ma J; Li A; Huang H; Jiang C; Shu Z; Zhu Y; Xiang Y; Tan L Int J Biol Macromol; 2024 Nov; 279(Pt 4):135509. PubMed ID: 39255881 [TBL] [Abstract][Full Text] [Related]
4. Recent Progress in MXene Hydrogel for Wearable Electronics. Ren Y; He Q; Xu T; Zhang W; Peng Z; Meng B Biosensors (Basel); 2023 Apr; 13(5):. PubMed ID: 37232856 [TBL] [Abstract][Full Text] [Related]
5. Preparation of lignin-based hydrogels, their properties and applications. Mondal AK; Uddin MT; Sujan SMA; Tang Z; Alemu D; Begum HA; Li J; Huang F; Ni Y Int J Biol Macromol; 2023 Aug; 245():125580. PubMed ID: 37379941 [TBL] [Abstract][Full Text] [Related]
6. Lignin derivatives-based hydrogels for biomedical applications. Khadem E; Ghafarzadeh M; Kharaziha M; Sun F; Zhang X Int J Biol Macromol; 2024 Mar; 261(Pt 2):129877. PubMed ID: 38307436 [TBL] [Abstract][Full Text] [Related]
7. Plant-inspired adhesive and tough hydrogel based on Ag-Lignin nanoparticles-triggered dynamic redox catechol chemistry. Gan D; Xing W; Jiang L; Fang J; Zhao C; Ren F; Fang L; Wang K; Lu X Nat Commun; 2019 Apr; 10(1):1487. PubMed ID: 30940814 [TBL] [Abstract][Full Text] [Related]
8. Innovative wearable solutions: Semi-releasing ion-conductive lignin hydrogel sensors for enhanced practicability. Ma H; Yang Y; Xu Z; Liu X; Wang F; Qiao Y; Song Y Int J Biol Macromol; 2024 Jun; 270(Pt 1):132142. PubMed ID: 38719005 [TBL] [Abstract][Full Text] [Related]
9. Tissue adhesive hydrogel bioelectronics. Li S; Cong Y; Fu J J Mater Chem B; 2021 Jun; 9(22):4423-4443. PubMed ID: 33908586 [TBL] [Abstract][Full Text] [Related]
10. Biofriendly, Stretchable, and Reusable Hydrogel Electronics as Wearable Force Sensors. Liu H; Li M; Ouyang C; Lu TJ; Li F; Xu F Small; 2018 Sep; 14(36):e1801711. PubMed ID: 30062710 [TBL] [Abstract][Full Text] [Related]
11. Lignin-based hydrogels: A review of preparation, properties, and application. Meng Y; Lu J; Cheng Y; Li Q; Wang H Int J Biol Macromol; 2019 Aug; 135():1006-1019. PubMed ID: 31154040 [TBL] [Abstract][Full Text] [Related]
12. Design of asymmetric-adhesion lignin reinforced hydrogels with anti-interference for strain sensing and moist air induced electricity generator. Fu C; Lin J; Tang Z; Chen L; Huang F; Kong F; Ni Y; Huang L Int J Biol Macromol; 2022 Mar; 201():104-110. PubMed ID: 34998868 [TBL] [Abstract][Full Text] [Related]
13. Self-Healing and Antibacterial Essential Oil-Loaded Mesoporous Silica/Polyacrylate Hybrid Hydrogel for High-Performance Wearable Body-Strain Sensing. Liu H; Ni Y; Hu J; Jin Y; Gu P; Qiu H; Chen K ACS Appl Mater Interfaces; 2022 May; 14(18):21509-21520. PubMed ID: 35500100 [TBL] [Abstract][Full Text] [Related]
14. Multifunctionally wearable monitoring with gelatin hydrogel electronics of liquid metals. Yuan X; Wu P; Gao Q; Xu J; Guo B; He Y Mater Horiz; 2022 Mar; 9(3):961-972. PubMed ID: 35179166 [TBL] [Abstract][Full Text] [Related]
15. Highly mechanical properties nanocomposite hydrogels with biorenewable lignin nanoparticles. Chen Y; Zheng K; Niu L; Zhang Y; Liu Y; Wang C; Chu F Int J Biol Macromol; 2019 May; 128():414-420. PubMed ID: 30682469 [TBL] [Abstract][Full Text] [Related]
16. Fabrication of lignin reinforced hybrid hydrogels with antimicrobial and self-adhesion for strain sensors. Chen Z; Luo J; Hu Y; Fu Y; Meng J; Luo S; Wang L; Zhang Y; Zhou J; Zhang M; Qin H Int J Biol Macromol; 2022 Dec; 222(Pt A):487-496. PubMed ID: 36174853 [TBL] [Abstract][Full Text] [Related]
17. Degradable and Recyclable Hydrogels for Sustainable Bioelectronics. Jia L; Li Y; Ren A; Xiang T; Zhou S ACS Appl Mater Interfaces; 2024 Jul; 16(26):32887-32905. PubMed ID: 38904545 [TBL] [Abstract][Full Text] [Related]
18. Self-Healing Hydrogel Bioelectronics. Li Z; Lu J; Ji T; Xue Y; Zhao L; Zhao K; Jia B; Wang B; Wang J; Zhang S; Jiang Z Adv Mater; 2024 May; 36(21):e2306350. PubMed ID: 37987498 [TBL] [Abstract][Full Text] [Related]
19. Seamless Integration of Conducting Hydrogels in Daily Life: From Preparation to Wearable Application. Imani KBC; Dodda JM; Yoon J; Torres FG; Imran AB; Deen GR; Al-Ansari R Adv Sci (Weinh); 2024 Apr; 11(13):e2306784. PubMed ID: 38240470 [TBL] [Abstract][Full Text] [Related]
20. Tannic Acid-Silver Dual Catalysis Induced Rapid Polymerization of Conductive Hydrogel Sensors with Excellent Stretchability, Self-Adhesion, and Strain-Sensitivity Properties. Hao S; Shao C; Meng L; Cui C; Xu F; Yang J ACS Appl Mater Interfaces; 2020 Dec; 12(50):56509-56521. PubMed ID: 33270440 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]