BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 33766741)

  • 1. In vitro study of the trypanocidal activity of anilinophenanthrolines against Trypanosoma cruzi.
    Zuma AA; da Silva RB; Garden SJ; de Souza W
    Parasitol Int; 2021 Aug; 83():102338. PubMed ID: 33766741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trypanosoma cruzi killing and immune response boosting by novel phenoxyhydrazine-thiazole against Chagas disease.
    Cristovão-Silva AC; Brelaz-de-Castro MCA; Dionisio da Silva E; Leite ACL; Santiago LBAA; Conceição JMD; da Silva Tiburcio R; de Santana DP; Bedor DCG; de Carvalho BÍV; Ferreira LFGR; de Freitas E Silva R; Alves Pereira VR; Hernandes MZ
    Exp Parasitol; 2024 Jun; 261():108749. PubMed ID: 38593864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural design, synthesis and pharmacological evaluation of thiazoles against Trypanosoma cruzi.
    de Oliveira Filho GB; Cardoso MVO; Espíndola JWP; Oliveira E Silva DA; Ferreira RS; Coelho PL; Anjos PSD; Santos ES; Meira CS; Moreira DRM; Soares MBP; Leite ACL
    Eur J Med Chem; 2017 Dec; 141():346-361. PubMed ID: 29031078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual Parasiticidal Activities of Phthalimides: Synthesis and Biological Profile against Trypanosoma cruzi and Plasmodium falciparum.
    Teixeira de Moraes Gomes PA; Veríssimo de Oliveira Cardoso M; Dos Santos IR; Amaro de Sousa F; da Conceição JM; Gouveia de Melo Silva V; Duarte D; Pereira R; Oliveira R; Nogueira F; Alves LC; Brayner FA; da Silva Santos AC; Rêgo Alves Pereira V; Lima Leite AC
    ChemMedChem; 2020 Nov; 15(22):2164-2175. PubMed ID: 32813331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coumarins isolated from Calophyllum brasiliense produce ultrastructural alterations and affect in vitro infectivity of Trypanosoma cruzi.
    Rodríguez-Hernández KD; Martínez I; Agredano-Moreno LT; Jiménez-García LF; Reyes-Chilpa R; Espinoza B
    Phytomedicine; 2019 Aug; 61():152827. PubMed ID: 31039535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mammea type coumarins isolated from Calophyllum brasiliense induced apoptotic cell death of Trypanosoma cruzi through mitochondrial dysfunction, ROS production and cell cycle alterations.
    Rodríguez-Hernández KD; Martínez I; Reyes-Chilpa R; Espinoza B
    Bioorg Chem; 2020 Jul; 100():103894. PubMed ID: 32388434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biological activity of the azlactone derivative EPA-35 against Trypanosoma cruzi.
    de Azeredo CM; Ávila EP; Pinheiro DL; Amarante GW; Soares MJ
    FEMS Microbiol Lett; 2017 Feb; 364(4):. PubMed ID: 28130370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A quinoxaline derivative as a potent chemotherapeutic agent, alone or in combination with benznidazole, against Trypanosoma cruzi.
    Rodrigues JH; Ueda-Nakamura T; Corrêa AG; Sangi DP; Nakamura CV
    PLoS One; 2014; 9(1):e85706. PubMed ID: 24465654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions between 4-aminoquinoline and heme: Promising mechanism against Trypanosoma cruzi.
    Lechuga GC; Borges JC; Calvet CM; de Araújo HP; Zuma AA; do Nascimento SB; Motta MCM; Bernardino AMR; Pereira MCS; Bourguignon SC
    Int J Parasitol Drugs Drug Resist; 2016 Dec; 6(3):154-164. PubMed ID: 27490082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Desing and synthesis of potent anti-Trypanosoma cruzi agents new thiazoles derivatives which induce apoptotic parasite death.
    da Silva EB; Oliveira E Silva DA; Oliveira AR; da Silva Mendes CH; Dos Santos TA; da Silva AC; de Castro MC; Ferreira RS; Moreira DR; Cardoso MV; de Simone CA; Pereira VR; Leite AC
    Eur J Med Chem; 2017 Apr; 130():39-50. PubMed ID: 28242550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Fluorinated Phenylbenzothiazole Arrests the Trypanosoma cruzi Cell Cycle and Diminishes the Infection of Mammalian Host Cells.
    Cuevas-Hernández RI; Girard RMBM; Martínez-Cerón S; Santos da Silva M; Elias MC; Crispim M; Trujillo-Ferrara JG; Silber AM
    Antimicrob Agents Chemother; 2020 Jan; 64(2):. PubMed ID: 31712204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trypanocidal Trixikingolides From
    Sales Junior PA; Zani CL; de Siqueira EP; Kohlhoff M; Marques FR; Caldeira ASP; Cota BB; Maia DNB; Tunes LG; Murta SMF; Alves TMA
    Nat Prod Res; 2021 Aug; 35(16):2691-2699. PubMed ID: 31530021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro and in vivo antiparasitic activity of Physalis angulata L. concentrated ethanolic extract against Trypanosoma cruzi.
    Meira CS; Guimarães ET; Dos Santos JA; Moreira DR; Nogueira RC; Tomassini TC; Ribeiro IM; de Souza CV; Ribeiro Dos Santos R; Soares MB
    Phytomedicine; 2015 Oct; 22(11):969-74. PubMed ID: 26407938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anti-Trypanosoma cruzi activity of costic acid isolated from Nectandra barbellata (Lauraceae) is associated with alterations in plasma membrane electric and mitochondrial membrane potentials.
    Londero VS; Costa-Silva TA; Tempone AG; Namiyama GM; Thevenard F; Antar GM; Baitello JB; Lago JHG
    Bioorg Chem; 2020 Jan; 95():103510. PubMed ID: 31884137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Candimine from Hippeastrum escoipense (Amaryllidaceae): Anti-Trypanosoma cruzi activity and synergistic effect with benznidazole.
    Ortiz JE; Piñeiro M; Martinez-Peinado N; Barrera P; Sosa M; Bastida J; Alonso-Padilla J; Feresin GE
    Phytomedicine; 2023 Jun; 114():154788. PubMed ID: 37037085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving the drug-likeness of inspiring natural products - evaluation of the antiparasitic activity against Trypanosoma cruzi through semi-synthetic and simplified analogues of licarin A.
    Morais TR; Conserva GAA; Varela MT; Costa-Silva TA; Thevenard F; Ponci V; Fortuna A; Falcão AC; Tempone AG; Fernandes JPS; Lago JHG
    Sci Rep; 2020 Mar; 10(1):5467. PubMed ID: 32214193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficacy of 2-hydroxy-3-phenylsulfanylmethyl-[1,4]-naphthoquinone derivatives against different Trypanosoma cruzi discrete type units: Identification of a promising hit compound.
    Lara LS; Moreira CS; Calvet CM; Lechuga GC; Souza RS; Bourguignon SC; Ferreira VF; Rocha D; Pereira MCS
    Eur J Med Chem; 2018 Jan; 144():572-581. PubMed ID: 29289882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental models in Chagas disease: a review of the methodologies applied for screening compounds against Trypanosoma cruzi.
    Fonseca-Berzal C; Arán VJ; Escario JA; Gómez-Barrio A
    Parasitol Res; 2018 Nov; 117(11):3367-3380. PubMed ID: 30232605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel coumarins active against Trypanosoma cruzi and toxicity assessment using the animal model Caenorhabditis elegans.
    Soares FGN; Göethel G; Kagami LP; das Neves GM; Sauer E; Birriel E; Varela J; Gonçalves IL; Von Poser G; González M; Kawano DF; Paula FR; de Melo EB; Garcia SC; Cerecetto H; Eifler-Lima VL
    BMC Pharmacol Toxicol; 2019 Dec; 20(Suppl 1):76. PubMed ID: 31852548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decoding the anti-Trypanosoma cruzi action of HIV peptidase inhibitors using epimastigotes as a model.
    Sangenito LS; Menna-Barreto RF; D Avila-Levy CM; Santos AL; Branquinha MH
    PLoS One; 2014; 9(12):e113957. PubMed ID: 25464510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.