These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 33766823)
1. Tissue at Risk and Ischemic Core Estimation Using Deep Learning in Acute Stroke. Yu Y; Xie Y; Thamm T; Gong E; Ouyang J; Christensen S; Marks MP; Lansberg MG; Albers GW; Zaharchuk G AJNR Am J Neuroradiol; 2021 Jun; 42(6):1030-1037. PubMed ID: 33766823 [TBL] [Abstract][Full Text] [Related]
2. Use of Deep Learning to Predict Final Ischemic Stroke Lesions From Initial Magnetic Resonance Imaging. Yu Y; Xie Y; Thamm T; Gong E; Ouyang J; Huang C; Christensen S; Marks MP; Lansberg MG; Albers GW; Zaharchuk G JAMA Netw Open; 2020 Mar; 3(3):e200772. PubMed ID: 32163165 [TBL] [Abstract][Full Text] [Related]
3. Impact of the reperfusion status for predicting the final stroke infarct using deep learning. Debs N; Cho TH; Rousseau D; Berthezène Y; Buisson M; Eker O; Mechtouff L; Nighoghossian N; Ovize M; Frindel C Neuroimage Clin; 2021; 29():102548. PubMed ID: 33450521 [TBL] [Abstract][Full Text] [Related]
4. Predicting final ischemic stroke lesions from initial diffusion-weighted images using a deep neural network. Nazari-Farsani S; Yu Y; Duarte Armindo R; Lansberg M; Liebeskind DS; Albers G; Christensen S; Levin CS; Zaharchuk G Neuroimage Clin; 2023; 37():103278. PubMed ID: 36481696 [TBL] [Abstract][Full Text] [Related]
5. Predicting Infarct Core From Computed Tomography Perfusion in Acute Ischemia With Machine Learning: Lessons From the ISLES Challenge. Hakim A; Christensen S; Winzeck S; Lansberg MG; Parsons MW; Lucas C; Robben D; Wiest R; Reyes M; Zaharchuk G Stroke; 2021 Jul; 52(7):2328-2337. PubMed ID: 33957774 [TBL] [Abstract][Full Text] [Related]
6. Prediction of Stroke Infarct Growth Rates by Baseline Perfusion Imaging. Wouters A; Robben D; Christensen S; Marquering HA; Roos YBWEM; van Oostenbrugge RJ; van Zwam WH; Dippel DWJ; Majoie CBLM; Schonewille WJ; van der Lugt A; Lansberg M; Albers GW; Suetens P; Lemmens R Stroke; 2022 Feb; 53(2):569-577. PubMed ID: 34587794 [TBL] [Abstract][Full Text] [Related]
7. U-net Models Based on Computed Tomography Perfusion Predict Tissue Outcome in Patients with Different Reperfusion Patterns. He Y; Luo Z; Zhou Y; Xue R; Li J; Hu H; Yan S; Chen Z; Wang J; Lou M Transl Stroke Res; 2022 Oct; 13(5):707-715. PubMed ID: 35043358 [TBL] [Abstract][Full Text] [Related]
8. Prediction of Tissue Outcome and Assessment of Treatment Effect in Acute Ischemic Stroke Using Deep Learning. Nielsen A; Hansen MB; Tietze A; Mouridsen K Stroke; 2018 Jun; 49(6):1394-1401. PubMed ID: 29720437 [TBL] [Abstract][Full Text] [Related]
9. Ischemic Core and Hypoperfusion Volumes Correlate With Infarct Size 24 Hours After Randomization in DEFUSE 3. Rao V; Christensen S; Yennu A; Mlynash M; Zaharchuk G; Heit J; Marks MP; Lansberg MG; Albers GW Stroke; 2019 Mar; 50(3):626-631. PubMed ID: 30727840 [TBL] [Abstract][Full Text] [Related]
10. Ischemic core and hypoperfusion volumes predict infarct size in SWIFT PRIME. Albers GW; Goyal M; Jahan R; Bonafe A; Diener HC; Levy EI; Pereira VM; Cognard C; Cohen DJ; Hacke W; Jansen O; Jovin TG; Mattle HP; Nogueira RG; Siddiqui AH; Yavagal DR; Baxter BW; Devlin TG; Lopes DK; Reddy VK; de Rochemont Rdu M; Singer OC; Bammer R; Saver JL Ann Neurol; 2016 Jan; 79(1):76-89. PubMed ID: 26476022 [TBL] [Abstract][Full Text] [Related]
17. Unsupervised Deep Learning for Stroke Lesion Segmentation on Follow-up CT Based on Generative Adversarial Networks. van Voorst H; Konduri PR; van Poppel LM; van der Steen W; van der Sluijs PM; Slot EMH; Emmer BJ; van Zwam WH; Roos YBWEM; Majoie CBLM; Zaharchuk G; Caan MWA; Marquering HA; ; AJNR Am J Neuroradiol; 2022 Aug; 43(8):1107-1114. PubMed ID: 35902122 [TBL] [Abstract][Full Text] [Related]
18. Ischemic core thresholds change with time to reperfusion: A case control study. Bivard A; Kleinig T; Miteff F; Butcher K; Lin L; Levi C; Parsons M Ann Neurol; 2017 Dec; 82(6):995-1003. PubMed ID: 29205466 [TBL] [Abstract][Full Text] [Related]