These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 33766823)

  • 1. Tissue at Risk and Ischemic Core Estimation Using Deep Learning in Acute Stroke.
    Yu Y; Xie Y; Thamm T; Gong E; Ouyang J; Christensen S; Marks MP; Lansberg MG; Albers GW; Zaharchuk G
    AJNR Am J Neuroradiol; 2021 Jun; 42(6):1030-1037. PubMed ID: 33766823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of Deep Learning to Predict Final Ischemic Stroke Lesions From Initial Magnetic Resonance Imaging.
    Yu Y; Xie Y; Thamm T; Gong E; Ouyang J; Huang C; Christensen S; Marks MP; Lansberg MG; Albers GW; Zaharchuk G
    JAMA Netw Open; 2020 Mar; 3(3):e200772. PubMed ID: 32163165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of the reperfusion status for predicting the final stroke infarct using deep learning.
    Debs N; Cho TH; Rousseau D; Berthezène Y; Buisson M; Eker O; Mechtouff L; Nighoghossian N; Ovize M; Frindel C
    Neuroimage Clin; 2021; 29():102548. PubMed ID: 33450521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting final ischemic stroke lesions from initial diffusion-weighted images using a deep neural network.
    Nazari-Farsani S; Yu Y; Duarte Armindo R; Lansberg M; Liebeskind DS; Albers G; Christensen S; Levin CS; Zaharchuk G
    Neuroimage Clin; 2023; 37():103278. PubMed ID: 36481696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting Infarct Core From Computed Tomography Perfusion in Acute Ischemia With Machine Learning: Lessons From the ISLES Challenge.
    Hakim A; Christensen S; Winzeck S; Lansberg MG; Parsons MW; Lucas C; Robben D; Wiest R; Reyes M; Zaharchuk G
    Stroke; 2021 Jul; 52(7):2328-2337. PubMed ID: 33957774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of Stroke Infarct Growth Rates by Baseline Perfusion Imaging.
    Wouters A; Robben D; Christensen S; Marquering HA; Roos YBWEM; van Oostenbrugge RJ; van Zwam WH; Dippel DWJ; Majoie CBLM; Schonewille WJ; van der Lugt A; Lansberg M; Albers GW; Suetens P; Lemmens R
    Stroke; 2022 Feb; 53(2):569-577. PubMed ID: 34587794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. U-net Models Based on Computed Tomography Perfusion Predict Tissue Outcome in Patients with Different Reperfusion Patterns.
    He Y; Luo Z; Zhou Y; Xue R; Li J; Hu H; Yan S; Chen Z; Wang J; Lou M
    Transl Stroke Res; 2022 Oct; 13(5):707-715. PubMed ID: 35043358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of Tissue Outcome and Assessment of Treatment Effect in Acute Ischemic Stroke Using Deep Learning.
    Nielsen A; Hansen MB; Tietze A; Mouridsen K
    Stroke; 2018 Jun; 49(6):1394-1401. PubMed ID: 29720437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ischemic Core and Hypoperfusion Volumes Correlate With Infarct Size 24 Hours After Randomization in DEFUSE 3.
    Rao V; Christensen S; Yennu A; Mlynash M; Zaharchuk G; Heit J; Marks MP; Lansberg MG; Albers GW
    Stroke; 2019 Mar; 50(3):626-631. PubMed ID: 30727840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ischemic core and hypoperfusion volumes predict infarct size in SWIFT PRIME.
    Albers GW; Goyal M; Jahan R; Bonafe A; Diener HC; Levy EI; Pereira VM; Cognard C; Cohen DJ; Hacke W; Jansen O; Jovin TG; Mattle HP; Nogueira RG; Siddiqui AH; Yavagal DR; Baxter BW; Devlin TG; Lopes DK; Reddy VK; de Rochemont Rdu M; Singer OC; Bammer R; Saver JL
    Ann Neurol; 2016 Jan; 79(1):76-89. PubMed ID: 26476022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Big Data Approaches to Phenotyping Acute Ischemic Stroke Using Automated Lesion Segmentation of Multi-Center Magnetic Resonance Imaging Data.
    Wu O; Winzeck S; Giese AK; Hancock BL; Etherton MR; Bouts MJRJ; Donahue K; Schirmer MD; Irie RE; Mocking SJT; McIntosh EC; Bezerra R; Kamnitsas K; Frid P; Wasselius J; Cole JW; Xu H; Holmegaard L; Jiménez-Conde J; Lemmens R; Lorentzen E; McArdle PF; Meschia JF; Roquer J; Rundek T; Sacco RL; Schmidt R; Sharma P; Slowik A; Stanne TM; Thijs V; Vagal A; Woo D; Bevan S; Kittner SJ; Mitchell BD; Rosand J; Worrall BB; Jern C; Lindgren AG; Maguire J; Rost NS
    Stroke; 2019 Jul; 50(7):1734-1741. PubMed ID: 31177973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Learning-Derived High-Level Neuroimaging Features Predict Clinical Outcomes for Large Vessel Occlusion.
    Nishi H; Oishi N; Ishii A; Ono I; Ogura T; Sunohara T; Chihara H; Fukumitsu R; Okawa M; Yamana N; Imamura H; Sadamasa N; Hatano T; Nakahara I; Sakai N; Miyamoto S
    Stroke; 2020 May; 51(5):1484-1492. PubMed ID: 32248769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Volumetric and Spatial Accuracy of Computed Tomography Perfusion Estimated Ischemic Core Volume in Patients With Acute Ischemic Stroke.
    Hoving JW; Marquering HA; Majoie CBLM; Yassi N; Sharma G; Liebeskind DS; van der Lugt A; Roos YB; van Zwam W; van Oostenbrugge RJ; Goyal M; Saver JL; Jovin TG; Albers GW; Davalos A; Hill MD; Demchuk AM; Bracard S; Guillemin F; Muir KW; White P; Mitchell PJ; Donnan GA; Davis SM; Campbell BCV
    Stroke; 2018 Oct; 49(10):2368-2375. PubMed ID: 30355095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ischemic Core Overestimation on Computed Tomography Perfusion.
    García-Tornel Á; Campos D; Rubiera M; Boned S; Olivé-Gadea M; Requena M; Ciolli L; Muchada M; Pagola J; Rodriguez-Luna D; Deck M; Juega J; Rodríguez-Villatoro N; Sanjuan E; Tomasello A; Piñana C; Hernández D; Álvarez-Sabin J; Molina CA; Ribó M
    Stroke; 2021 May; 52(5):1751-1760. PubMed ID: 33682453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic Ischemic Core Estimation Based on Noncontrast-Enhanced Computed Tomography.
    Nishi H; Ishii A; Tsuji H; Fuchigami T; Sasaki N; Tachibana A; Ito H; Miyamoto S
    Stroke; 2023 Jul; 54(7):1815-1822. PubMed ID: 37264917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine Learning-Enabled Automated Determination of Acute Ischemic Core From Computed Tomography Angiography.
    Sheth SA; Lopez-Rivera V; Barman A; Grotta JC; Yoo AJ; Lee S; Inam ME; Savitz SI; Giancardo L
    Stroke; 2019 Nov; 50(11):3093-3100. PubMed ID: 31547796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unsupervised Deep Learning for Stroke Lesion Segmentation on Follow-up CT Based on Generative Adversarial Networks.
    van Voorst H; Konduri PR; van Poppel LM; van der Steen W; van der Sluijs PM; Slot EMH; Emmer BJ; van Zwam WH; Roos YBWEM; Majoie CBLM; Zaharchuk G; Caan MWA; Marquering HA; ;
    AJNR Am J Neuroradiol; 2022 Aug; 43(8):1107-1114. PubMed ID: 35902122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ischemic core thresholds change with time to reperfusion: A case control study.
    Bivard A; Kleinig T; Miteff F; Butcher K; Lin L; Levi C; Parsons M
    Ann Neurol; 2017 Dec; 82(6):995-1003. PubMed ID: 29205466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tissue outcome prediction in hyperacute ischemic stroke: Comparison of machine learning models.
    Benzakoun J; Charron S; Turc G; Hassen WB; Legrand L; Boulouis G; Naggara O; Baron JC; Thirion B; Oppenheim C
    J Cereb Blood Flow Metab; 2021 Nov; 41(11):3085-3096. PubMed ID: 34159824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perfusion computer tomography: imaging and clinical validation in acute ischaemic stroke.
    Bivard A; Spratt N; Levi C; Parsons M
    Brain; 2011 Nov; 134(Pt 11):3408-16. PubMed ID: 22075524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.