These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 33767135)

  • 21. The melanocytorrhagic hypothesis of vitiligo tested on pigmented, stressed, reconstructed epidermis.
    Cario-André M; Pain C; Gauthier Y; Taïeb A
    Pigment Cell Res; 2007 Oct; 20(5):385-93. PubMed ID: 17850512
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A New View of Vitiligo: Looking at Normal-Appearing Skin.
    Picardo M; Bastonini E
    J Invest Dermatol; 2015 Jul; 135(7):1713-1714. PubMed ID: 26066890
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Decreased expression of neuregulin1 in the lesional skin of vitiligo patients.
    Rani S; Kumari U; Bhardwaj S; Parsad D; Sharma VL; Kumar R
    Int J Dermatol; 2019 Feb; 58(2):242-249. PubMed ID: 30074619
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impact of high-mobility group box 1 on melanocytic survival and its involvement in the pathogenesis of vitiligo.
    Kim JY; Lee EJ; Seo J; Oh SH
    Br J Dermatol; 2017 Jun; 176(6):1558-1568. PubMed ID: 27787879
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Melanocytes are not absent in lesional skin of long duration vitiligo.
    Tobin DJ; Swanson NN; Pittelkow MR; Peters EM; Schallreuter KU
    J Pathol; 2000 Aug; 191(4):407-16. PubMed ID: 10918216
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of vitamin D in melanogenesis with an emphasis on vitiligo.
    AlGhamdi K; Kumar A; Moussa N
    Indian J Dermatol Venereol Leprol; 2013; 79(6):750-8. PubMed ID: 24177606
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chemical induced pathognomonic features observed in human vitiligo are mediated through miR-2909 RNomics pathway.
    Kaushik H; Kaul D; Kumaran MS; Parsad D
    J Dermatol Sci; 2020 Nov; 100(2):92-98. PubMed ID: 33039241
    [TBL] [Abstract][Full Text] [Related]  

  • 28. New insights into the pathogenesis of vitiligo: imbalance of epidermal cytokines at sites of lesions.
    Moretti S; Spallanzani A; Amato L; Hautmann G; Gallerani I; Fabiani M; Fabbri P
    Pigment Cell Res; 2002 Apr; 15(2):87-92. PubMed ID: 11936274
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Expression and modulation of apoptosis regulatory molecules in human melanocytes: significance in vitiligo.
    van den Wijngaard RM; Aten J; Scheepmaker A; Le Poole IC; Tigges AJ; Westerhof W; Das PK
    Br J Dermatol; 2000 Sep; 143(3):573-81. PubMed ID: 10971331
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Study of CCN3 (NOV) and DDR1 in normal melanocytes and vitiligo skin.
    Ricard AS; Pain C; Daubos A; Ezzedine K; Lamrissi-Garcia I; Bibeyran A; Guyonnet-Dupérat V; Taieb A; Cario-André M
    Exp Dermatol; 2012 Jun; 21(6):411-6. PubMed ID: 22507556
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Baicalein protects human vitiligo melanocytes from oxidative stress through activation of NF-E2-related factor2 (Nrf2) signaling pathway.
    Ma J; Li S; Zhu L; Guo S; Yi X; Cui T; He Y; Chang Y; Liu B; Li C; Jian Z
    Free Radic Biol Med; 2018 Dec; 129():492-503. PubMed ID: 30342186
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Local Epidermal Endocrine Estrogen Protects Human Melanocytes against Oxidative Stress, a Novel Insight into Vitiligo Pathology.
    Yamamoto A; Yang L; Kuroda Y; Guo J; Teng L; Tsuruta D; Katayama I
    Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33383933
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Expressional changes in the intracellular melanogenesis pathways and their possible role in the pathogenesis of vitiligo.
    Kingo K; Aunin E; Karelson M; Rätsep R; Silm H; Vasar E; Kõks S
    J Dermatol Sci; 2008 Oct; 52(1):39-46. PubMed ID: 18514490
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Possible Modulator of Vitiligo Metabolic Impairment: Rethinking a PPARγ Agonist.
    Papaccio F; Bellei B; Ottaviani M; D'Arino A; Truglio M; Caputo S; Cigliana G; Sciuto L; Migliano E; Pacifico A; Iacovelli P; Picardo M
    Cells; 2022 Nov; 11(22):. PubMed ID: 36429011
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lymphoid Stress Surveillance Response Contributes to Vitiligo Pathogenesis.
    Raam L; Kaleviste E; Šunina M; Vaher H; Saare M; Prans E; Pihlap M; Abram K; Karelson M; Peterson P; Rebane A; Kisand K; Kingo K
    Front Immunol; 2018; 9():2707. PubMed ID: 30515176
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Aberrant expression of complement regulatory proteins, membrane cofactor protein and decay accelerating factor, in the involved epidermis of patients with vitiligo.
    van den Wijngaard RM; Asghar SS; Pijnenborg AC; Tigges AJ; Westerhof W; Das PK
    Br J Dermatol; 2002 Jan; 146(1):80-7. PubMed ID: 11841370
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metabolic syndrome in vitiligo.
    Pietrzak A; Bartosińska J; Hercogová J; Lotti TM; Chodorowska G
    Dermatol Ther; 2012; 25 Suppl 1():S41-3. PubMed ID: 23237037
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Vitiligo: How do oxidative stress-induced autoantigens trigger autoimmunity?
    Xie H; Zhou F; Liu L; Zhu G; Li Q; Li C; Gao T
    J Dermatol Sci; 2016 Jan; 81(1):3-9. PubMed ID: 26387449
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Skin melanocytes and fibroblasts show different changes in choline metabolism during cellular senescence.
    Windler C; Gey C; Seeger K
    Mech Ageing Dev; 2017 Jun; 164():82-90. PubMed ID: 28476532
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Autophagy deficient melanocytes display a senescence associated secretory phenotype that includes oxidized lipid mediators.
    Ni C; Narzt MS; Nagelreiter IM; Zhang CF; Larue L; Rossiter H; Grillari J; Tschachler E; Gruber F
    Int J Biochem Cell Biol; 2016 Dec; 81(Pt B):375-382. PubMed ID: 27732890
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.