These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Impaired photoacclimation in a kleptoplastidic dinoflagellate reveals physiological limits of early stages of endosymbiosis. Garric S; Ratin M; Marie D; Foulon V; Probert I; Rodriguez F; Six C Curr Biol; 2024 Jul; 34(14):3064-3076.e5. PubMed ID: 38936366 [TBL] [Abstract][Full Text] [Related]
3. Structural basis of energy transfer in Porphyridium purpureum phycobilisome. Ma J; You X; Sun S; Wang X; Qin S; Sui SF Nature; 2020 Mar; 579(7797):146-151. PubMed ID: 32076272 [TBL] [Abstract][Full Text] [Related]
4. Proteomic analysis of the phycobiliprotein antenna of the cryptophyte alga Guillardia theta cultured under different light intensities. Kieselbach T; Cheregi O; Green BR; Funk C Photosynth Res; 2018 Mar; 135(1-3):149-163. PubMed ID: 28540588 [TBL] [Abstract][Full Text] [Related]
5. Diversification of light capture ability was accompanied by the evolution of phycobiliproteins in cryptophyte algae. Greenwold MJ; Cunningham BR; Lachenmyer EM; Pullman JM; Richardson TL; Dudycha JL Proc Biol Sci; 2019 May; 286(1902):20190655. PubMed ID: 31088271 [TBL] [Abstract][Full Text] [Related]
6. Expansion of phycobilisome linker gene families in mesophilic red algae. Lee J; Kim D; Bhattacharya D; Yoon HS Nat Commun; 2019 Oct; 10(1):4823. PubMed ID: 31645564 [TBL] [Abstract][Full Text] [Related]
7. Phycoerythrin Association with Photosystem II in the Cryptophyte Alga Rhodomonas salina. Stadnichuk IN; Novikova TM; Miniuk GS; Boichenko VA; Bolychevtseva YV; Gusev ES; Lukashev EP Biochemistry (Mosc); 2020 Jun; 85(6):679-688. PubMed ID: 32586231 [TBL] [Abstract][Full Text] [Related]
8. Red algae acclimate to low light by modifying phycobilisome composition to maintain efficient light harvesting. Voerman SE; Ruseckas A; Turnbull GA; Samuel IDW; Burdett HL BMC Biol; 2022 Dec; 20(1):291. PubMed ID: 36575464 [TBL] [Abstract][Full Text] [Related]
9. A novel type of light-harvesting antenna protein of red algal origin in algae with secondary plastids. Sturm S; Engelken J; Gruber A; Vugrinec S; Kroth PG; Adamska I; Lavaud J BMC Evol Biol; 2013 Jul; 13():159. PubMed ID: 23899289 [TBL] [Abstract][Full Text] [Related]
10. Molecular dissection of the soluble photosynthetic antenna from the cryptophyte alga Hemiselmis andersenii. Rathbone HW; Laos AJ; Michie KA; Iranmanesh H; Biazik J; Goodchild SC; Thordarson P; Green BR; Curmi PMG Commun Biol; 2023 Nov; 6(1):1158. PubMed ID: 37957226 [TBL] [Abstract][Full Text] [Related]
11. Evolutionary Dynamics of Cryptophyte Plastid Genomes. Kim JI; Moore CE; Archibald JM; Bhattacharya D; Yi G; Yoon HS; Shin W Genome Biol Evol; 2017 Jul; 9(7):1859-1872. PubMed ID: 28854597 [TBL] [Abstract][Full Text] [Related]
12. Phycobilisomes and Phycobiliproteins in the Pigment Apparatus of Oxygenic Photosynthetics: From Cyanobacteria to Tertiary Endosymbiosis. Stadnichuk IN; Kusnetsov VV Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768613 [TBL] [Abstract][Full Text] [Related]
13. Structure of Phycobilisomes. Sui SF Annu Rev Biophys; 2021 May; 50():53-72. PubMed ID: 33957054 [TBL] [Abstract][Full Text] [Related]
14. Characterization of the genuine type 2 chromatic acclimation in the two Geminocystis cyanobacteria. Hirose Y; Misawa N; Yonekawa C; Nagao N; Watanabe M; Ikeuchi M; Eki T DNA Res; 2017 Aug; 24(4):387-396. PubMed ID: 28338901 [TBL] [Abstract][Full Text] [Related]
15. Structure of phycobilisome from the red alga Griffithsia pacifica. Zhang J; Ma J; Liu D; Qin S; Sun S; Zhao J; Sui SF Nature; 2017 Nov; 551(7678):57-63. PubMed ID: 29045394 [TBL] [Abstract][Full Text] [Related]
16. The gamma subunit of R-phycoerythrin and its possible mode of transport into the plastid of red algae. Apt KE; Hoffman NE; Grossman AR J Biol Chem; 1993 Aug; 268(22):16208-15. PubMed ID: 8344905 [TBL] [Abstract][Full Text] [Related]
17. Molecular structures reveal the origin of spectral variation in cryptophyte light harvesting antenna proteins. Michie KA; Harrop SJ; Rathbone HW; Wilk KE; Teng CY; Hoef-Emden K; Hiller RG; Green BR; Curmi PMG Protein Sci; 2023 Mar; 32(3):e4586. PubMed ID: 36721353 [TBL] [Abstract][Full Text] [Related]
18. Prey type constrains growth and photosynthetic capacity of the kleptoplastidic ciliate Mesodinium chamaeleon (Ciliophora). Moeller HV; Hsu V; Lepori-Bui M; Mesrop LY; Chinn C; Johnson MD J Phycol; 2021 Jun; 57(3):916-930. PubMed ID: 33454988 [TBL] [Abstract][Full Text] [Related]
19. Evolution of a light-harvesting protein by addition of new subunits and rearrangement of conserved elements: crystal structure of a cryptophyte phycoerythrin at 1.63-A resolution. Wilk KE; Harrop SJ; Jankova L; Edler D; Keenan G; Sharples F; Hiller RG; Curmi PM Proc Natl Acad Sci U S A; 1999 Aug; 96(16):8901-6. PubMed ID: 10430868 [TBL] [Abstract][Full Text] [Related]
20. Translocation of a phycoerythrin alpha subunit across five biological membranes. Gould SB; Fan E; Hempel F; Maier UG; Klösgen RB J Biol Chem; 2007 Oct; 282(41):30295-302. PubMed ID: 17702756 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]