BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 33767279)

  • 1. Hemodynamic analysis for stenosis microfluidic model of thrombosis with refined computational fluid dynamics simulation.
    Zhao YC; Vatankhah P; Goh T; Michelis R; Kyanian K; Zhang Y; Li Z; Ju LA
    Sci Rep; 2021 Mar; 11(1):6875. PubMed ID: 33767279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational fluid dynamics based Taguchi analysis on shear stress in microfluidic cerebrovascular channels.
    Garud KS; Jeong S; Lee MY
    Int J Numer Method Biomed Eng; 2023 Jul; 39(7):e3733. PubMed ID: 37221673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The importance of blood rheology in patient-specific computational fluid dynamics simulation of stenotic carotid arteries.
    Mendieta JB; Fontanarosa D; Wang J; Paritala PK; McGahan T; Lloyd T; Li Z
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1477-1490. PubMed ID: 31894438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing radiocephalic wrist arteriovenous fistulas of obtuse anastomosis using computational fluid dynamics and clinical application.
    Lee J; Kim S; Kim SM; Song R; Kim HK; Park JS; Park SC
    J Vasc Access; 2016 Nov; 17(6):512-520. PubMed ID: 27791257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental and CFD flow studies in an intracranial aneurysm model with Newtonian and non-Newtonian fluids.
    Frolov SV; Sindeev SV; Liepsch D; Balasso A
    Technol Health Care; 2016 May; 24(3):317-33. PubMed ID: 26835725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of boundary conditions for CFD simulation in human carotid artery.
    Xu P; Liu X; Zhang H; Ghista D; Zhang D; Shi C; Huang W
    Biomech Model Mechanobiol; 2018 Dec; 17(6):1581-1597. PubMed ID: 29982960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstruction of carotid stenosis hemodynamics based on guidewire pressure data and computational modeling.
    Dinh H; Vinuela F; Szeder V; Khatibi K; Mejia LP; Chien A
    Med Biol Eng Comput; 2022 May; 60(5):1253-1268. PubMed ID: 35359199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational fluid dynamics characterization of pulsatile flow in central and Sano shunts connected to the pulmonary arteries: importance of graft angulation on shear stress-induced, platelet-mediated thrombosis.
    Ascuitto R; Ross-Ascuitto N; Guillot M; Celestin C
    Interact Cardiovasc Thorac Surg; 2017 Sep; 25(3):414-421. PubMed ID: 28525548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accounting for residence-time in blood rheology models: do we really need non-Newtonian blood flow modelling in large arteries?
    Arzani A
    J R Soc Interface; 2018 Sep; 15(146):. PubMed ID: 30257924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of carotid artery geometry on the magnitude and distribution of wall shear stress gradients.
    Wells DR; Archie JP; Kleinstreuer C
    J Vasc Surg; 1996 Apr; 23(4):667-78. PubMed ID: 8627904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of anticoagulant treatment in deep vein thrombosis: A patient-specific computational fluid dynamics study.
    Fortuny G; Herrero J; Puigjaner D; Olivé C; Marimon F; Garcia-Bennett J; Rodríguez D
    J Biomech; 2015 Jul; 48(10):2047-53. PubMed ID: 25917201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hemodynamics in Transplant Renal Artery Stenosis and its Alteration after Stent Implantation Based on a Patient-specific Computational Fluid Dynamics Model.
    Wang HY; Liu LS; Cao HM; Li J; Deng RH; Fu Q; Zhang HX; Fei JG; Wang CX
    Chin Med J (Engl); 2017 5th Jan 2017; 130(1):23-31. PubMed ID: 28051019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of microvascular sutures on shear strain rate in realistic pulsatile flow.
    Wain RAJ; Smith DJ; Hammond DR; Whitty JPM
    Microvasc Res; 2018 Jul; 118():69-81. PubMed ID: 29522755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Different Blood Flow Models in Coronary Artery Diseases: Effects on hemodynamic parameters.
    Gaudio LT; Caruso MV; De Rosa S; Indolfi C; Fragomeni G
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3185-3188. PubMed ID: 30441071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear model on pulsatile flow of blood through a porous bifurcated arterial stenosis in the presence of magnetic field and periodic body acceleration.
    Ponalagusamy R; Priyadharshini S
    Comput Methods Programs Biomed; 2017 Apr; 142():31-41. PubMed ID: 28325445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inter-Laboratory Characterization of the Velocity Field in the FDA Blood Pump Model Using Particle Image Velocimetry (PIV).
    Hariharan P; Aycock KI; Buesen M; Day SW; Good BC; Herbertson LH; Steinseifer U; Manning KB; Craven BA; Malinauskas RA
    Cardiovasc Eng Technol; 2018 Dec; 9(4):623-640. PubMed ID: 30291585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of the Anatomical Structure on the Hemodynamics of Iliac Vein Stenosis.
    Changsheng L; Haiquan F; Kun W; Xiaotian W; Yonggang W
    J Biomech Eng; 2023 Jan; 145(1):. PubMed ID: 36000921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Choice of a hemodynamic model for occlusive thrombosis in arteries.
    Ku DN; Casa LDC; Hastings SM
    J Biomech; 2017 Jan; 50():110-113. PubMed ID: 27899178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blood flow in hemodialysis catheters: a numerical simulation and microscopic analysis of in vivo-formed fibrin.
    Lucas TC; Tessarolo F; Jakitsch V; Caola I; Brunori G; Nollo G; Huebner R
    Artif Organs; 2014 Jul; 38(7):556-65. PubMed ID: 24341622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of non-Newtonian fluid rheology on an arterial bypass graft: A numerical investigation guided by constructal design.
    Dutra RF; Zinani FSF; Rocha LAO; Biserni C
    Comput Methods Programs Biomed; 2021 Apr; 201():105944. PubMed ID: 33535083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.