These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 33767294)

  • 1. Trivial and nontrivial error sources account for misidentification of protein partners in mutual information approaches.
    Pontes C; Andrade M; Fiorote J; Treptow W
    Sci Rep; 2021 Mar; 11(1):6902. PubMed ID: 33767294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coevolutive, evolutive and stochastic information in protein-protein interactions.
    Andrade M; Pontes C; Treptow W
    Comput Struct Biotechnol J; 2019; 17():1429-1435. PubMed ID: 31871588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inferring interaction partners from protein sequences using mutual information.
    Bitbol AF
    PLoS Comput Biol; 2018 Nov; 14(11):e1006401. PubMed ID: 30422978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MISTIC: Mutual information server to infer coevolution.
    Simonetti FL; Teppa E; Chernomoretz A; Nielsen M; Marino Buslje C
    Nucleic Acids Res; 2013 Jul; 41(Web Server issue):W8-14. PubMed ID: 23716641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correction for phylogeny, small number of observations and data redundancy improves the identification of coevolving amino acid pairs using mutual information.
    Buslje CM; Santos J; Delfino JM; Nielsen M
    Bioinformatics; 2009 May; 25(9):1125-31. PubMed ID: 19276150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate simulation and detection of coevolution signals in multiple sequence alignments.
    Ackerman SH; Tillier ER; Gatti DL
    PLoS One; 2012; 7(10):e47108. PubMed ID: 23091608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reducing the false positive rate in the non-parametric analysis of molecular coevolution.
    Codoñer FM; O'Dea S; Fares MA
    BMC Evol Biol; 2008 Apr; 8():106. PubMed ID: 18402697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Obtaining extremely large and accurate protein multiple sequence alignments from curated hierarchical alignments.
    Neuwald AF; Lanczycki CJ; Hodges TK; Marchler-Bauer A
    Database (Oxford); 2020 Jan; 2020():. PubMed ID: 32500917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving protein-protein interaction prediction using evolutionary information from low-quality MSAs.
    Várnai C; Burkoff NS; Wild DL
    PLoS One; 2017; 12(2):e0169356. PubMed ID: 28166227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of multiple sequence alignment errors using complete-likelihood score and position-shift map.
    Ezawa K
    BMC Bioinformatics; 2016 Mar; 17():133. PubMed ID: 26992851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation measures of multiple sequence alignments.
    Gonnet GH; Korostensky C; Benner S
    J Comput Biol; 2000; 7(1-2):261-76. PubMed ID: 10890401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New methods to measure residues coevolution in proteins.
    Gao H; Dou Y; Yang J; Wang J
    BMC Bioinformatics; 2011 May; 12():206. PubMed ID: 21612664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequence alignment, mutual information, and dissimilarity measures for constructing phylogenies.
    Penner O; Grassberger P; Paczuski M
    PLoS One; 2011 Jan; 6(1):e14373. PubMed ID: 21245917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DeepECA: an end-to-end learning framework for protein contact prediction from a multiple sequence alignment.
    Fukuda H; Tomii K
    BMC Bioinformatics; 2020 Jan; 21(1):10. PubMed ID: 31918654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reducing phylogenetic bias in correlated mutation analysis.
    Ashkenazy H; Kliger Y
    Protein Eng Des Sel; 2010 May; 23(5):321-6. PubMed ID: 20067922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using information theory to search for co-evolving residues in proteins.
    Martin LC; Gloor GB; Dunn SD; Wahl LM
    Bioinformatics; 2005 Nov; 21(22):4116-24. PubMed ID: 16159918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein contact prediction by integrating deep multiple sequence alignments, coevolution and machine learning.
    Adhikari B; Hou J; Cheng J
    Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):84-96. PubMed ID: 29047157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative study of the effectiveness and limitations of current methods for detecting sequence coevolution.
    Mao W; Kaya C; Dutta A; Horovitz A; Bahar I
    Bioinformatics; 2015 Jun; 31(12):1929-37. PubMed ID: 25697822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inter-protein residue covariation information unravels physically interacting protein dimers.
    Salmanian S; Pezeshk H; Sadeghi M
    BMC Bioinformatics; 2020 Dec; 21(1):584. PubMed ID: 33334319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing multiple sequence alignments using a genetic algorithm based on three objectives: structural information, non-gaps percentage and totally conserved columns.
    Ortuño FM; Valenzuela O; Rojas F; Pomares H; Florido JP; Urquiza JM; Rojas I
    Bioinformatics; 2013 Sep; 29(17):2112-21. PubMed ID: 23793754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.