These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 33767304)

  • 1. Nucleation of Ga droplets self-assembly on GaAs(111)A substrates.
    Tuktamyshev A; Fedorov A; Bietti S; Vichi S; Tambone R; Tsukamoto S; Sanguinetti S
    Sci Rep; 2021 Mar; 11(1):6833. PubMed ID: 33767304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature Activated Dimensionality Crossover in the Nucleation of Quantum Dots by Droplet Epitaxy on GaAs(111)A Vicinal Substrates.
    Tuktamyshev A; Fedorov A; Bietti S; Tsukamoto S; Sanguinetti S
    Sci Rep; 2019 Oct; 9(1):14520. PubMed ID: 31601913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Observation of Ga droplet formation on (311)A and (511)A GaAs surfaces.
    Abuwaar ZY; Wang ZM; Lee JH; Salamo GJ
    Nanotechnology; 2006 Aug; 17(16):4037-40. PubMed ID: 21727534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling of Masked Droplet Deposition for Site-Controlled Ga Droplets.
    Feddersen S; Zolatanosha V; Alshaikh A; Reuter D; Heyn C
    Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleation on a stepped surface with an Ehrlich-Schwöbel barrier.
    Chromcova Z; Tringides MC; Chvoj Z
    J Phys Condens Matter; 2013 Jul; 25(26):265003. PubMed ID: 23733080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of Al and Ga Droplet Nucleation during Droplet Epitaxy or Droplet Etching.
    Heyn C; Feddersen S
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33673053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In adatom diffusion on In(x)Ga(1-x)As/GaAs(001): effects of strain, reconstruction and composition.
    Rosini M; Kratzer P; Magri R
    J Phys Condens Matter; 2009 Sep; 21(35):355007. PubMed ID: 21828628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site-Control of InAs/GaAs Quantum Dots with Indium-Assisted Deoxidation.
    Hussain S; Pozzato A; Tormen M; Zannier V; Biasiol G
    Materials (Basel); 2016 Mar; 9(3):. PubMed ID: 28773333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of nucleation and critical layer formation during In/GaAs droplet epitaxy.
    Balakirev SV; Solodovnik MS; Eremenko MM; Konoplev BG; Ageev OA
    Nanotechnology; 2019 Dec; 30(50):505601. PubMed ID: 31480037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-temperature droplet epitaxy of symmetric GaAs/AlGaAs quantum dots.
    Bietti S; Basset FB; Tuktamyshev A; Bonera E; Fedorov A; Sanguinetti S
    Sci Rep; 2020 Apr; 10(1):6532. PubMed ID: 32300114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial regularity of InAs-GaAs quantum dots: quantifying the dependence of lateral ordering on growth rate.
    Konishi T; Clarke E; Burrows CW; Bomphrey JJ; Murray R; Bell GR
    Sci Rep; 2017 Feb; 7():42606. PubMed ID: 28211899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ion-Beam-Directed Self-Ordering of Ga Nanodroplets on GaAs Surfaces.
    Xu X; Wu J; Wang X; Zhang M; Li J; Shi Z; Li H; Zhou Z; Ji H; Niu X; Wang ZM
    Nanoscale Res Lett; 2016 Dec; 11(1):38. PubMed ID: 26815607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel method for site-controlled surface nanodot fabrication by ion beam synthesis.
    Buckmaster R; Hanada T; Kawazoe Y; Cho MW; Yao T; Urushihara N; Yamamoto A
    Nano Lett; 2005 Apr; 5(4):771-6. PubMed ID: 15826126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observation of change in critical thickness of In droplet formation on GaAs(100).
    Lee JH; Wang ZhM; Salamo GJ
    J Phys Condens Matter; 2007 Apr; 19(17):176223. PubMed ID: 21690968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of self-assembled growth of ordered GaAs nanowire arrays by metalorganic vapor phase epitaxy on GaAs vicinal substrates.
    Mohan P; Bag R; Singh S; Kumar A; Tyagi R
    Nanotechnology; 2012 Jan; 23(2):025601. PubMed ID: 22166369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decomposition controlled by surface morphology during langmuir evaporation of GaAs.
    Tersoff J; Jesson DE; Tang WX
    Phys Rev Lett; 2010 Jul; 105(3):035702. PubMed ID: 20867779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Droplet-Confined Alternate Pulsed Epitaxy of GaAs Nanowires on Si Substrates down to CMOS-Compatible Temperatures.
    Balaghi L; Tauchnitz T; Hübner R; Bischoff L; Schneider H; Helm M; Dimakis E
    Nano Lett; 2016 Jul; 16(7):4032-9. PubMed ID: 27351336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fundamental role of arsenic flux in nanohole formation by Ga droplet etching on GaAs(001).
    Fuster D; González Y; González L
    Nanoscale Res Lett; 2014; 9(1):309. PubMed ID: 24994962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site-controlled self-assembled InAs quantum dots grown on GaAs substrates.
    Lin SY; Tseng CC; Chung TH; Liao WH; Chen SH; Chyi JI
    Nanotechnology; 2010 Jul; 21(29):295304. PubMed ID: 20601753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vapor liquid solid-hydride vapor phase epitaxy (VLS-HVPE) growth of ultra-long defect-free GaAs nanowires: ab initio simulations supporting center nucleation.
    André Y; Lekhal K; Hoggan P; Avit G; Cadiz F; Rowe A; Paget D; Petit E; Leroux C; Trassoudaine A; Ramdani MR; Monier G; Colas D; Ajib R; Castelluci D; Gil E
    J Chem Phys; 2014 May; 140(19):194706. PubMed ID: 24852556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.