These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 33767352)

  • 1. Time-frequency time-space LSTM for robust classification of physiological signals.
    Pham TD
    Sci Rep; 2021 Mar; 11(1):6936. PubMed ID: 33767352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel Deep Learning Network for Gait Recognition Using Multimodal Inertial Sensors.
    Shi LF; Liu ZY; Zhou KJ; Shi Y; Jing X
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new approach for arrhythmia classification using deep coded features and LSTM networks.
    Yildirim O; Baloglu UB; Tan RS; Ciaccio EJ; Acharya UR
    Comput Methods Programs Biomed; 2019 Jul; 176():121-133. PubMed ID: 31200900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Classification of normal sinus rhythm, abnormal arrhythmia and congestive heart failure ECG signals using LSTM and hybrid CNN-SVM deep neural networks.
    Çınar A; Tuncer SA
    Comput Methods Biomech Biomed Engin; 2021 Feb; 24(2):203-214. PubMed ID: 32955928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long short-term memory (LSTM) recurrent neural network for muscle activity detection.
    Ghislieri M; Cerone GL; Knaflitz M; Agostini V
    J Neuroeng Rehabil; 2021 Oct; 18(1):153. PubMed ID: 34674720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CNN and LSTM-Based Emotion Charting Using Physiological Signals.
    Dar MN; Akram MU; Khawaja SG; Pujari AN
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32823807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of neural basis expansion analysis for interpretable time series (N-BEATS) and recurrent neural networks for heart dysfunction classification.
    Puszkarski B; Hryniów K; Sarwas G
    Physiol Meas; 2022 Jun; 43(6):. PubMed ID: 35537407
    [No Abstract]   [Full Text] [Related]  

  • 8. Human activity recognition using wearable sensors, discriminant analysis, and long short-term memory-based neural structured learning.
    Uddin MZ; Soylu A
    Sci Rep; 2021 Aug; 11(1):16455. PubMed ID: 34385552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cascaded LSTM recurrent neural network for automated sleep stage classification using single-channel EEG signals.
    Michielli N; Acharya UR; Molinari F
    Comput Biol Med; 2019 Mar; 106():71-81. PubMed ID: 30685634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applying deep neural networks and inertial measurement unit in recognizing irregular walking differences in the real world.
    Hu B; Li S; Chen Y; Kavi R; Coppola S
    Appl Ergon; 2021 Oct; 96():103414. PubMed ID: 34087702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human activity recognition from inertial sensor time-series using batch normalized deep LSTM recurrent networks.
    Zebin T; Sperrin M; Peek N; Casson AJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1-4. PubMed ID: 30440301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning for predicting respiratory rate from biosignals.
    Kumar AK; Ritam M; Han L; Guo S; Chandra R
    Comput Biol Med; 2022 May; 144():105338. PubMed ID: 35248805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep Learning-Based Stroke Disease Prediction System Using Real-Time Bio Signals.
    Choi YA; Park SJ; Jun JA; Pyo CS; Cho KH; Lee HS; Yu JH
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34206540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolving Long Short-Term Memory Network-Based Text Classification.
    Singh A; Dargar SK; Gupta A; Kumar A; Srivastava AK; Srivastava M; Kumar Tiwari P; Ullah MA
    Comput Intell Neurosci; 2022; 2022():4725639. PubMed ID: 35237308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-frequency time-space long short-term memory networks for image classification of histopathological tissue.
    Pham TD
    Sci Rep; 2021 Jul; 11(1):13703. PubMed ID: 34211077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LSTM Networks Using Smartphone Data for Sensor-Based Human Activity Recognition in Smart Homes.
    Mekruksavanich S; Jitpattanakul A
    Sensors (Basel); 2021 Feb; 21(5):. PubMed ID: 33652697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Classification of Electrocardiography Hybrid Convolutional Neural Network-Long Short Term Memory with Fully Connected Layer.
    Ramachandran D; Kumar RS; Alkhayyat A; Malik RQ; Srinivasan P; Priya GG; Gosu Adigo A
    Comput Intell Neurosci; 2022; 2022():6348424. PubMed ID: 35860642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DAFA-BiLSTM: Deep Autoregression Feature Augmented Bidirectional LSTM network for time series prediction.
    Wang H; Zhang Y; Liang J; Liu L
    Neural Netw; 2023 Jan; 157():240-256. PubMed ID: 36399979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using Synthesized IMU Data to Train a Long-Short Term Memory-based Neural Network for Unobtrusive Gait Analysis with a Sparse Sensor Setup.
    Lueken M; Wenner J; Leonhardt S; Ngo C
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3653-3656. PubMed ID: 36086654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid deep convolutional model-based emotion recognition using multiple physiological signals.
    Patlar Akbulut F
    Comput Methods Biomech Biomed Engin; 2022 Nov; 25(15):1678-1690. PubMed ID: 35107402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.