BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 33767386)

  • 21. Low incidence of SNVs and indels in trio genomes of Cas9-mediated multiplex edited sheep.
    Wang X; Liu J; Niu Y; Li Y; Zhou S; Li C; Ma B; Kou Q; Petersen B; Sonstegard T; Huang X; Jiang Y; Chen Y
    BMC Genomics; 2018 May; 19(1):397. PubMed ID: 29801435
    [TBL] [Abstract][Full Text] [Related]  

  • 22. From Mouse Models to Human Disease: An Approach for Amyotrophic Lateral Sclerosis.
    Alrafiah AR
    In Vivo; 2018; 32(5):983-998. PubMed ID: 30150420
    [TBL] [Abstract][Full Text] [Related]  

  • 23. SOD1 in neurotoxicity and its controversial roles in SOD1 mutation-negative ALS.
    Hayashi Y; Homma K; Ichijo H
    Adv Biol Regul; 2016 Jan; 60():95-104. PubMed ID: 26563614
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oligodendrocytes contribute to motor neuron death in ALS via SOD1-dependent mechanism.
    Ferraiuolo L; Meyer K; Sherwood TW; Vick J; Likhite S; Frakes A; Miranda CJ; Braun L; Heath PR; Pineda R; Beattie CE; Shaw PJ; Askwith CC; McTigue D; Kaspar BK
    Proc Natl Acad Sci U S A; 2016 Oct; 113(42):E6496-E6505. PubMed ID: 27688759
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Perspective on SOD1 mediated toxicity in Amyotrophic Lateral Sclerosis.
    Sangwan S; Eisenberg DS
    Postepy Biochem; 2016; 62(3):362-369. PubMed ID: 28132491
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Harnessing accurate non-homologous end joining for efficient precise deletion in CRISPR/Cas9-mediated genome editing.
    Guo T; Feng YL; Xiao JJ; Liu Q; Sun XN; Xiang JF; Kong N; Liu SC; Chen GQ; Wang Y; Dong MM; Cai Z; Lin H; Cai XJ; Xie AY
    Genome Biol; 2018 Oct; 19(1):170. PubMed ID: 30340517
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Distinct conformers of transmissible misfolded SOD1 distinguish human SOD1-FALS from other forms of familial and sporadic ALS.
    Ayers JI; Diamond J; Sari A; Fromholt S; Galaleldeen A; Ostrow LW; Glass JD; Hart PJ; Borchelt DR
    Acta Neuropathol; 2016 Dec; 132(6):827-840. PubMed ID: 27704280
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular dissection of ALS-associated toxicity of SOD1 in transgenic mice using an exon-fusion approach.
    Deng HX; Jiang H; Fu R; Zhai H; Shi Y; Liu E; Hirano M; Dal Canto MC; Siddique T
    Hum Mol Genet; 2008 Aug; 17(15):2310-9. PubMed ID: 18424447
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Different human copper-zinc superoxide dismutase mutants, SOD1G93A and SOD1H46R, exert distinct harmful effects on gross phenotype in mice.
    Pan L; Yoshii Y; Otomo A; Ogawa H; Iwasaki Y; Shang HF; Hadano S
    PLoS One; 2012; 7(3):e33409. PubMed ID: 22438926
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Targeting autotaxin impacts disease advance in the SOD1-G93A mouse model of amyotrophic lateral sclerosis.
    Gento-Caro Á; Vilches-Herrando E; Portillo F; González-Forero D; Moreno-López B
    Brain Pathol; 2022 May; 32(3):e13022. PubMed ID: 34585475
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genome Editing of Monogenic Neuromuscular Diseases: A Systematic Review.
    Long C; Amoasii L; Bassel-Duby R; Olson EN
    JAMA Neurol; 2016 Nov; 73(11):1349-1355. PubMed ID: 27668807
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient CRISPR/Cas9-based gene knockout in watermelon.
    Tian S; Jiang L; Gao Q; Zhang J; Zong M; Zhang H; Ren Y; Guo S; Gong G; Liu F; Xu Y
    Plant Cell Rep; 2017 Mar; 36(3):399-406. PubMed ID: 27995308
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Overexpression of TDP-43 Protein in the Neuron and Oligodendrocyte Cells Causes the Progressive Motor Neuron Degeneration in the SOD1 G93A Transgenic Mouse Model of Amyotrophic Lateral Sclerosis.
    Lu Y; Tang C; Zhu L; Li J; Liang H; Zhang J; Xu R
    Int J Biol Sci; 2016; 12(9):1140-9. PubMed ID: 27570488
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A streamlined CRISPR workflow to introduce mutations and generate isogenic iPSCs for modeling amyotrophic lateral sclerosis.
    Deneault E; Chaineau M; Nicouleau M; Castellanos Montiel MJ; Franco Flores AK; Haghi G; Chen CX; Abdian N; Shlaifer I; Beitel LK; Durcan TM
    Methods; 2022 Jul; 203():297-310. PubMed ID: 34500068
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fenretinide Beneficial Effects on Amyotrophic Lateral Sclerosis-associated SOD1
    Orienti I; Armida M; Dobrowolny G; Pepponi R; Sollazzini G; Pezzola A; Casola I; Musarò A; Popoli P; Potenza RL
    Neuroscience; 2021 Oct; 473():1-12. PubMed ID: 34363869
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Therapeutic Genome Editing and In Vivo Delivery.
    Ramirez-Phillips AC; Liu D
    AAPS J; 2021 Jun; 23(4):80. PubMed ID: 34080099
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transgenic mouse model for familial amyotrophic lateral sclerosis with superoxide dismutase-1 mutation.
    Shibata N
    Neuropathology; 2001 Mar; 21(1):82-92. PubMed ID: 11304046
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of genomic sites for CRISPR/Cas9-based genome editing in the Vitis vinifera genome.
    Wang Y; Liu X; Ren C; Zhong GY; Yang L; Li S; Liang Z
    BMC Plant Biol; 2016 Apr; 16():96. PubMed ID: 27098585
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ALS-associated mutation SOD1
    Wang H; Yi J; Li X; Xiao Y; Dhakal K; Zhou J
    Bone; 2018 Jan; 106():126-138. PubMed ID: 29030231
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genome Editing by CRISPR/Cas9 in Sorghum Through Biolistic Bombardment.
    Liu G; Li J; Godwin ID
    Methods Mol Biol; 2019; 1931():169-183. PubMed ID: 30652290
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.