BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 33768358)

  • 1. Orthotropic bone remodelling around uncemented femoral implant: a comparison with isotropic formulation.
    Mathai B; Dhara S; Gupta S
    Biomech Model Mechanobiol; 2021 Jun; 20(3):1115-1134. PubMed ID: 33768358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone remodelling in implanted proximal femur using topology optimization and parameterized cellular model.
    Mathai B; Dhara S; Gupta S
    J Mech Behav Biomed Mater; 2022 Jan; 125():104903. PubMed ID: 34717117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Concept and development of an orthotropic FE model of the proximal femur.
    Wirtz DC; Pandorf T; Portheine F; Radermacher K; Schiffers N; Prescher A; Weichert D; Niethard FU
    J Biomech; 2003 Feb; 36(2):289-93. PubMed ID: 12547369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative study of orthotropic and isotropic bone adaptation in the femur.
    Geraldes DM; Phillips AT
    Int J Numer Method Biomed Eng; 2014 Sep; 30(9):873-89. PubMed ID: 24753477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanobiochemical bone remodelling around an uncemented acetabular component: influence of bone orthotropy.
    Saviour CM; Mathai B; Gupta S
    Med Biol Eng Comput; 2024 Jun; 62(6):1717-1732. PubMed ID: 38353834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activity intensity, assistive devices and joint replacement influence predicted remodelling in the proximal femur.
    Dickinson AS
    Biomech Model Mechanobiol; 2016 Feb; 15(1):181-94. PubMed ID: 26183472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel approach to estimate trabecular bone anisotropy from stress tensors.
    Hazrati Marangalou J; Ito K; van Rietbergen B
    Biomech Model Mechanobiol; 2015 Jan; 14(1):39-48. PubMed ID: 24777672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Consideration of multiple load cases is critical in modelling orthotropic bone adaptation in the femur.
    Geraldes DM; Modenese L; Phillips AT
    Biomech Model Mechanobiol; 2016 Oct; 15(5):1029-42. PubMed ID: 26578078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting the yield of the proximal femur using high-order finite-element analysis with inhomogeneous orthotropic material properties.
    Yosibash Z; Tal D; Trabelsi N
    Philos Trans A Math Phys Eng Sci; 2010 Jun; 368(1920):2707-23. PubMed ID: 20439270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions.
    Peng L; Bai J; Zeng X; Zhou Y
    Med Eng Phys; 2006 Apr; 28(3):227-33. PubMed ID: 16076560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of an inhomogeneous orthotropic and isotropic material models used for FE analyses.
    Baca V; Horak Z; Mikulenka P; Dzupa V
    Med Eng Phys; 2008 Sep; 30(7):924-30. PubMed ID: 18243761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions.
    Baca V; Horak Z
    Med Eng Phys; 2007 Oct; 29(8):935. PubMed ID: 17097326
    [No Abstract]   [Full Text] [Related]  

  • 13. Strain adaptive bone remodelling: influence of the implantation technique.
    Behrens BA; Bouguecha A; Nolte I; Meyer-Lindenberg A; Stukenborg-Colsman C; Pressel T
    Stud Health Technol Inform; 2008; 133():33-44. PubMed ID: 18376011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trabecular bone adaptation with an orthotropic material model.
    Miller Z; Fuchs MB; Arcan M
    J Biomech; 2002 Feb; 35(2):247-56. PubMed ID: 11784543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of an anisotropic bone-remodelling model based on a damage-repair theory to the analysis of the proximal femur before and after total hip replacement.
    Doblaré M; García JM
    J Biomech; 2001 Sep; 34(9):1157-70. PubMed ID: 11506786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical evaluation of bone remodelling and adaptation considering different hip prosthesis designs.
    Levadnyi I; Awrejcewicz J; Gubaua JE; Pereira JT
    Clin Biomech (Bristol, Avon); 2017 Dec; 50():122-129. PubMed ID: 29100185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of primary stability on load transfer and bone remodelling within the uncemented resurfaced femur.
    Pal B; Gupta S
    Proc Inst Mech Eng H; 2011 Jun; 225(6):549-61. PubMed ID: 22034739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel approach to estimate trabecular bone anisotropy using a database approach.
    Hazrati Marangalou J; Ito K; Cataldi M; Taddei F; van Rietbergen B
    J Biomech; 2013 Sep; 46(14):2356-62. PubMed ID: 23972430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Femoral bone mineral density distribution is dominantly regulated by strain energy density in remodeling.
    Zhang Y; Luo Y
    Biomed Mater Eng; 2020; 31(3):179-190. PubMed ID: 32597795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of interface condition and implant design on bone remodelling and failure risk for the resurfaced femoral head.
    Rothstock S; Uhlenbrock A; Bishop N; Laird L; Nassutt R; Morlock M
    J Biomech; 2011 Jun; 44(9):1646-53. PubMed ID: 21511258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.