BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 33768358)

  • 21. Functional adaptation of cancellous bone in human proximal femur predicted by trabecular surface remodeling simulation toward uniform stress state.
    Tsubota K; Adachi T; Tomita Y
    J Biomech; 2002 Dec; 35(12):1541-51. PubMed ID: 12445607
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bone remodelling inside a cemented resurfaced femoral head.
    Gupta S; New AM; Taylor M
    Clin Biomech (Bristol, Avon); 2006 Jul; 21(6):594-602. PubMed ID: 16542761
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Parametric investigation of load-induced structure remodeling in the proximal femur.
    Marzban A; Canavan P; Warner G; Vaziri A; Nayeb-Hashemi H
    Proc Inst Mech Eng H; 2012 Jun; 226(6):450-60. PubMed ID: 22783761
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cortical and interfacial bone changes around a non-cemented hip implant: simulations using a combined strain/damage remodelling algorithm.
    Scannell PT; Prendergast PJ
    Med Eng Phys; 2009 May; 31(4):477-88. PubMed ID: 19188086
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bone remodelling around the tibia due to total ankle replacement: effects of implant material and implant-bone interfacial conditions.
    Mondal S; Ghosh R
    Comput Methods Biomech Biomed Engin; 2019 Dec; 22(16):1247-1257. PubMed ID: 31497997
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sensitivity of periprosthetic stress-shielding to load and the bone density-modulus relationship in subject-specific finite element models.
    Weinans H; Sumner DR; Igloria R; Natarajan RN
    J Biomech; 2000 Jul; 33(7):809-17. PubMed ID: 10831755
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A numerical study of failure mechanisms in the cemented resurfaced femur: effects of interface characteristics and bone remodelling.
    Pal B; Gupta S; New AM
    Proc Inst Mech Eng H; 2009 May; 223(4):471-84. PubMed ID: 19499837
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plausibility and parameter sensitivity of micro-finite element-based joint load prediction at the proximal femur.
    Synek A; Pahr DH
    Biomech Model Mechanobiol; 2018 Jun; 17(3):843-852. PubMed ID: 29289992
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microscale poroelastic metamodel for efficient mesoscale bone remodelling simulations.
    Villette CC; Phillips ATM
    Biomech Model Mechanobiol; 2017 Dec; 16(6):2077-2091. PubMed ID: 28795282
    [TBL] [Abstract][Full Text] [Related]  

  • 30. X-ray image review of the bone remodeling around an osseointegrated trans-femoral implant and a finite element simulation case study.
    Xu W; Robinson K
    Ann Biomed Eng; 2008 Mar; 36(3):435-43. PubMed ID: 18197477
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of orthotropy on biomechanics of peri-implant bone in complete mandible model with full dentition.
    Ding X; Liao SH; Zhu XH; Wang HM
    Biomed Res Int; 2014; 2014():709398. PubMed ID: 25530968
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A new approach to determine the accuracy of morphology-elasticity relationships in continuum FE analyses of human proximal femur.
    Hazrati Marangalou J; Ito K; van Rietbergen B
    J Biomech; 2012 Nov; 45(16):2884-92. PubMed ID: 23017379
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Correlation of computed finite element stresses to bone density after remodeling around cementless femoral implants.
    Skinner HB; Kilgus DJ; Keyak J; Shimaoka EE; Kim AS; Tipton JS
    Clin Orthop Relat Res; 1994 Aug; (305):178-89. PubMed ID: 8050227
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Orientation of orthotropic material properties in a femur FE model: a method based on the principal stresses directions.
    San Antonio T; Ciaccia M; Müller-Karger C; Casanova E
    Med Eng Phys; 2012 Sep; 34(7):914-9. PubMed ID: 22100056
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effects of the spatial influence function on orthotropic femur remodelling.
    Shang Y; Bai J; Peng L
    Proc Inst Mech Eng H; 2008 Jul; 222(5):601-9. PubMed ID: 18756679
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effective elastic properties of human trabecular bone may be approximated using micro-finite element analyses of embedded volume elements.
    Daszkiewicz K; Maquer G; Zysset PK
    Biomech Model Mechanobiol; 2017 Jun; 16(3):731-742. PubMed ID: 27785611
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tissue stresses and strain in trabeculae of a canine proximal femur can be quantified from computer reconstructions.
    Van Rietbergen B; Müller R; Ulrich D; Rüegsegger P; Huiskes R
    J Biomech; 1999 Apr; 32(4):443-51. PubMed ID: 10213036
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Patient-specific finite-element analyses of the proximal femur with orthotropic material properties validated by experiments.
    Trabelsi N; Yosibash Z
    J Biomech Eng; 2011 Jun; 133(6):061001. PubMed ID: 21744921
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Activity and loading influence the predicted bone remodeling around cemented hip replacements.
    Dickinson AS
    J Biomech Eng; 2014 Apr; 136(4):. PubMed ID: 24337038
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bone remodelling of a proximal femur with the thrust plate prosthesis: an in vitro case.
    Taylor WR; Ploeg H; Hertig D; Warner MD; Clift SE
    Comput Methods Biomech Biomed Engin; 2004 Jun; 7(3):131-7. PubMed ID: 15512756
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.