These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

407 related articles for article (PubMed ID: 33768388)

  • 1. Role of extremophiles and their extremozymes in biorefinery process of lignocellulose degradation.
    Chettri D; Verma AK; Sarkar L; Verma AK
    Extremophiles; 2021 May; 25(3):203-219. PubMed ID: 33768388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Development of Extremophilic Bacteria and Their Application in Biorefinery.
    Zhu D; Adebisi WA; Ahmad F; Sethupathy S; Danso B; Sun J
    Front Bioeng Biotechnol; 2020; 8():483. PubMed ID: 32596215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploitation of lignocellulosic-based biomass biorefinery: A critical review of renewable bioresource, sustainability and economic views.
    Chen Z; Chen L; Khoo KS; Gupta VK; Sharma M; Show PL; Yap PS
    Biotechnol Adv; 2023 Dec; 69():108265. PubMed ID: 37783293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alkaliphiles: The Versatile Tools in Biotechnology.
    Mamo G; Mattiasson B
    Adv Biochem Eng Biotechnol; 2020; 172():1-51. PubMed ID: 32342125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cold and Hot Extremozymes: Industrial Relevance and Current Trends.
    Sarmiento F; Peralta R; Blamey JM
    Front Bioeng Biotechnol; 2015; 3():148. PubMed ID: 26539430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revisiting the scope and applications of food enzymes from extremophiles.
    Akanbi TO; Ji D; Agyei D
    J Food Biochem; 2020 Nov; 44(11):e13475. PubMed ID: 32996180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laccases for biorefinery applications: a critical review on challenges and perspectives.
    Roth S; Spiess AC
    Bioprocess Biosyst Eng; 2015 Dec; 38(12):2285-313. PubMed ID: 26437966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perspectives on the microorganism of extreme environments and their applications.
    Kochhar N; I K K; Shrivastava S; Ghosh A; Rawat VS; Sodhi KK; Kumar M
    Curr Res Microb Sci; 2022; 3():100134. PubMed ID: 35909612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extremophiles in biofuel synthesis.
    Barnard D; Casanueva A; Tuffin M; Cowan D
    Environ Technol; 2010; 31(8-9):871-88. PubMed ID: 20662378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineered microbial host selection for value-added bioproducts from lignocellulose.
    de Paula RG; Antoniêto ACC; Ribeiro LFC; Srivastava N; O'Donovan A; Mishra PK; Gupta VK; Silva RN
    Biotechnol Adv; 2019 Nov; 37(6):107347. PubMed ID: 30771467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lignocellulolytic extremozymes and their biotechnological applications.
    Sharma N; Agarwal A; Bijoy A; Pandit S; Sharma RK
    Extremophiles; 2023 Nov; 28(1):2. PubMed ID: 37950773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent developments in pretreatment technologies on lignocellulosic biomass: Effect of key parameters, technological improvements, and challenges.
    Bhatia SK; Jagtap SS; Bedekar AA; Bhatia RK; Patel AK; Pant D; Rajesh Banu J; Rao CV; Kim YG; Yang YH
    Bioresour Technol; 2020 Mar; 300():122724. PubMed ID: 31926792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acid-based lignocellulosic biomass biorefinery for bioenergy production: Advantages, application constraints, and perspectives.
    Hoang AT; Nizetic S; Ong HC; Chong CT; Atabani AE; Pham VV
    J Environ Manage; 2021 Oct; 296():113194. PubMed ID: 34243094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Revolutionizing biofuel generation: Unleashing the power of CRISPR-Cas mediated gene editing of extremophiles.
    Garg D; Samota MK; Kontis N; Patel N; Bala S; Rosado AS
    Microbiol Res; 2023 Sep; 274():127443. PubMed ID: 37399654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review on lignin structure, pretreatments, fermentation reactions and biorefinery potential.
    Ponnusamy VK; Nguyen DD; Dharmaraja J; Shobana S; Banu JR; Saratale RG; Chang SW; Kumar G
    Bioresour Technol; 2019 Jan; 271():462-472. PubMed ID: 30270050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A review of biological delignification and detoxification methods for lignocellulosic bioethanol production.
    Moreno AD; Ibarra D; Alvira P; Tomás-Pejó E; Ballesteros M
    Crit Rev Biotechnol; 2015; 35(3):342-54. PubMed ID: 24506661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extremophile Microalgae: the potential for biotechnological application.
    Malavasi V; Soru S; Cao G
    J Phycol; 2020 Jun; 56(3):559-573. PubMed ID: 31917871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Journey of lignin from a roadblock to bridge for lignocellulose biorefineries: A comprehensive review.
    Sharma V; Tsai ML; Nargotra P; Chen CW; Sun PP; Singhania RR; Patel AK; Dong CD
    Sci Total Environ; 2023 Feb; 861():160560. PubMed ID: 36574559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Review on Bacterial Contribution to Lignocellulose Breakdown into Useful Bio-Products.
    Chukwuma OB; Rafatullah M; Tajarudin HA; Ismail N
    Int J Environ Res Public Health; 2021 Jun; 18(11):. PubMed ID: 34204975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lignocellulose in future biorefineries: Strategies for cost-effective production of biomaterials and bioenergy.
    Reshmy R; Philip E; Madhavan A; Sirohi R; Pugazhendhi A; Binod P; Kumar Awasthi M; Vivek N; Kumar V; Sindhu R
    Bioresour Technol; 2022 Jan; 344(Pt B):126241. PubMed ID: 34756981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.