BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1039 related articles for article (PubMed ID: 33769101)

  • 1. Regulation of cerebral blood flow in humans: physiology and clinical implications of autoregulation.
    Claassen JAHR; Thijssen DHJ; Panerai RB; Faraci FM
    Physiol Rev; 2021 Oct; 101(4):1487-1559. PubMed ID: 33769101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alternative representation of neural activation in multivariate models of neurovascular coupling in humans.
    Panerai RB; Hanby MF; Robinson TG; Haunton VJ
    J Neurophysiol; 2019 Aug; 122(2):833-843. PubMed ID: 31242062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of cerebral blood flow after spinal cord injury.
    Phillips AA; Ainslie PN; Krassioukov AV; Warburton DE
    J Neurotrauma; 2013 Sep; 30(18):1551-63. PubMed ID: 23758347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of the autonomic nervous system in cerebral blood flow regulation in dementia: A review.
    Beishon LC; Hosford P; Gurung D; Brassard P; Minhas JS; Robinson TG; Haunton V; Panerai RB
    Auton Neurosci; 2022 Jul; 240():102985. PubMed ID: 35525173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Does hypercapnia-induced impairment of cerebral autoregulation affect neurovascular coupling? A functional TCD study.
    Maggio P; Salinet AS; Panerai RB; Robinson TG
    J Appl Physiol (1985); 2013 Aug; 115(4):491-7. PubMed ID: 23743398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multimodality monitoring during passive tilt and Valsalva maneuver under hypercapnia.
    Hetzel A; Braune S; Guschlbauer B; Dohms K; Prasse A; Lücking CH
    J Neuroimaging; 1999 Apr; 9(2):108-12. PubMed ID: 10208109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional vascular contributions to cognitive impairment and dementia: mechanisms and consequences of cerebral autoregulatory dysfunction, endothelial impairment, and neurovascular uncoupling in aging.
    Toth P; Tarantini S; Csiszar A; Ungvari Z
    Am J Physiol Heart Circ Physiol; 2017 Jan; 312(1):H1-H20. PubMed ID: 27793855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variability in the magnitude of the cerebral blood flow response and the shape of the cerebral blood flow-pressure autoregulation curve during hypotension in normal rats [corrected].
    Jones SC; Radinsky CR; Furlan AJ; Chyatte D; Qu Y; Easley KA; Perez-Trepichio AD
    Anesthesiology; 2002 Aug; 97(2):488-96. PubMed ID: 12151941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of aging on cerebral autoregulation during cardiopulmonary bypass. Association with postoperative cognitive dysfunction.
    Newman MF; Croughwell ND; Blumenthal JA; White WD; Lewis JB; Smith LR; Frasco P; Towner EA; Schell RM; Hurwitz BJ
    Circulation; 1994 Nov; 90(5 Pt 2):II243-9. PubMed ID: 7955260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cerebrovascular regulation and vasoneuronal coupling.
    Daffertshofer M; Hennerici M
    J Clin Ultrasound; 1995 Feb; 23(2):125-38. PubMed ID: 7699100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transient Hypoperfusion to Ischemic/Anoxic Spreading Depolarization is Related to Autoregulatory Failure in the Rat Cerebral Cortex.
    Menyhárt Á; Varga DP; M Tóth O; Makra P; Bari F; Farkas E
    Neurocrit Care; 2022 Jun; 37(Suppl 1):112-122. PubMed ID: 34855119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alterations in resting cerebrovascular regulation do not affect reactivity to hypoxia, hyperoxia or neurovascular coupling following a SCUBA dive.
    Caldwell HG; Hoiland RL; Barak OF; Mijacika T; Burma JS; Dujić Ž; Ainslie PN
    Exp Physiol; 2020 Sep; 105(9):1540-1549. PubMed ID: 32618374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Response to CO2 and autoregulation of cortical cerebral blood flow during isoflurane anesthesia].
    Kitaguchi K; Kuro M; Furuya H; Sumida T; Yamagishi N; Hirai K; Simomura T; Simokawa M; Okuda T
    Masui; 1990 Dec; 39(12):1607-12. PubMed ID: 2129131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of the Cerebral Circulation by Arterial Carbon Dioxide.
    Hoiland RL; Fisher JA; Ainslie PN
    Compr Physiol; 2019 Jun; 9(3):1101-1154. PubMed ID: 31187899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cerebral blood flow in normal aging adults: cardiovascular determinants, clinical implications, and aerobic fitness.
    Tarumi T; Zhang R
    J Neurochem; 2018 Mar; 144(5):595-608. PubMed ID: 28986925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cerebral autoregulation.
    Paulson OB; Strandgaard S; Edvinsson L
    Cerebrovasc Brain Metab Rev; 1990; 2(2):161-92. PubMed ID: 2201348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in neurovascular coupling with cerebral perfusion pressure indicate a link to cerebral autoregulation.
    Acharya D; Ruesch A; Schmitt S; Yang J; Smith MA; Kainerstorfer JM
    J Cereb Blood Flow Metab; 2022 Jul; 42(7):1247-1258. PubMed ID: 35078343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of cerebral ischemia on human neurovascular coupling, CO2 reactivity, and dynamic cerebral autoregulation.
    Salinet AS; Robinson TG; Panerai RB
    J Appl Physiol (1985); 2015 Jan; 118(2):170-7. PubMed ID: 25593216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neurovascular coupling and cerebral autoregulation in atrial fibrillation.
    Junejo RT; Braz ID; Lucas SJ; van Lieshout JJ; Phillips AA; Lip GY; Fisher JP
    J Cereb Blood Flow Metab; 2020 Aug; 40(8):1647-1657. PubMed ID: 31426699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrative assessment of cerebral blood regulation in COPD patients.
    Corrêa DI; de-Lima-Oliveira M; Nogueira RC; Carvalho-Pinto RM; Bor-Seng-Shu E; Panerai RB; Carvalho CRF; Salinet AS
    Respir Physiol Neurobiol; 2024 Jan; 319():104166. PubMed ID: 37758031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 52.