BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 33769164)

  • 1. Efficiency and perceived exertion of manual wheelchair propulsion: a physiological comparison of push vs pull wheeling.
    Habibi A; MacGillivray MK; Kalra H; Sawatzky BJ
    J Med Eng Technol; 2021 May; 45(4):249-257. PubMed ID: 33769164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficiency and perceived exertion of novel wheelchair wheels: A comparative study.
    Rocha LS; Sawatzky B; Mortenson WB
    Assist Technol; 2020; 32(2):68-72. PubMed ID: 29771627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hand-rim biomechanics during geared manual wheelchair propulsion over different ground conditions in individuals with spinal cord injury.
    Jahanian O; Gaglio A; Cho CC; Muqeet V; Smith R; Morrow MMB; Hsiao-Wecksler ET; Slavens BA
    J Biomech; 2022 Sep; 142():111235. PubMed ID: 35947887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of glenohumeral joint kinematics and muscle activation during standard and geared manual wheelchair mobility.
    Slavens BA; Jahanian O; Schnorenberg AJ; Hsiao-Wecksler ET
    Med Eng Phys; 2019 Aug; 70():1-8. PubMed ID: 31285137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variability in bimanual wheelchair propulsion: consistency of two instrumented wheels during handrim wheelchair propulsion on a motor driven treadmill.
    Vegter RJ; Lamoth CJ; de Groot S; Veeger DH; van der Woude LH
    J Neuroeng Rehabil; 2013 Jan; 10():9. PubMed ID: 23360756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel push-pull central-lever mechanism reduces peak forces and energy-cost compared to hand-rim wheelchair propulsion during a controlled lab-based experiment.
    le Rütte TA; Trigo F; Bessems L; van der Woude LHV; Vegter RJK
    J Neuroeng Rehabil; 2022 Mar; 19(1):30. PubMed ID: 35300710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physical strain and mechanical efficiency in hubcrank and handrim wheelchair propulsion.
    van der Woude LH; van Kranen E; Ariëns G; Rozendal RH; Veeger HE
    J Med Eng Technol; 1995; 19(4):123-31. PubMed ID: 8544207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiologic comparison of forward and reverse wheelchair propulsion.
    Salvi FJ; Hoffman MD; Sabharwal S; Clifford PS
    Arch Phys Med Rehabil; 1998 Jan; 79(1):36-40. PubMed ID: 9440415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wheelchair propulsion: effects of experience and push strategy on efficiency and perceived exertion.
    Lenton JP; Fowler NE; van der Woude L; Goosey-Tolfrey VL
    Appl Physiol Nutr Metab; 2008 Oct; 33(5):870-9. PubMed ID: 18923561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical efficiency of two commercial lever-propulsion mechanisms for manual wheelchair locomotion.
    Lui J; MacGillivray MK; Sheel AW; Jeyasurya J; Sadeghi M; Sawatzky BJ
    J Rehabil Res Dev; 2013; 50(10):1363-72. PubMed ID: 24699972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the ecological validity and variability of a 10-min bout of wheeling.
    MacGillivray MK; Lam T; Klimstra M; Zehr EP; Sawatzky BJ
    Disabil Rehabil Assist Technol; 2018 Apr; 13(3):287-292. PubMed ID: 28485185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Motor Skill-Based Training on Wheelchair Propulsion Biomechanics in Older Adults: A Randomized Controlled Trial.
    MacGillivray MK; Eng JJ; Dean E; Sawatzky BJ
    Arch Phys Med Rehabil; 2020 Jan; 101(1):1-10. PubMed ID: 31493382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of seat height on manual wheelchair foot propulsion, a repeated-measures crossover study: part 2 - wheeling backward on a soft surface.
    Heinrichs ND; Kirby RL; Smith C; Russell KFJ; Theriault CJ; Doucette SP
    Disabil Rehabil Assist Technol; 2022 Apr; 17(3):325-330. PubMed ID: 32594783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Practice-based skill acquisition of pushrim-activated power-assisted wheelchair propulsion versus regular handrim propulsion in novices.
    de Klerk R; Lutjeboer T; Vegter RJK; van der Woude LHV
    J Neuroeng Rehabil; 2018 Jun; 15(1):56. PubMed ID: 29940986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wheelchair propulsion biomechanics and wheelers' quality of life: an exploratory review.
    Chow JW; Levy CE
    Disabil Rehabil Assist Technol; 2011; 6(5):365-77. PubMed ID: 20932232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of seat height on manual wheelchair foot propulsion, a repeated-measures crossover study: part 1 - wheeling forward on a smooth level surface.
    Heinrichs ND; Kirby RL; Smith C; Russell KFJ; Theriault CJ; Doucette SP
    Disabil Rehabil Assist Technol; 2021 Nov; 16(8):831-839. PubMed ID: 32238086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of shoulder joint kinematics and muscle activity during geared and standard manual wheelchair mobility.
    Jahanian O; Schnorenberg AJ; Slavens BA
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6162-6165. PubMed ID: 28269659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of variable practice on the motor learning outcomes in manual wheelchair propulsion.
    Leving MT; Vegter RJ; de Groot S; van der Woude LH
    J Neuroeng Rehabil; 2016 Nov; 13(1):100. PubMed ID: 27881124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differentiated perceived exertion and self-regulated wheelchair exercise.
    Paulson TA; Bishop NC; Eston RG; Goosey-Tolfrey VL
    Arch Phys Med Rehabil; 2013 Nov; 94(11):2269-76. PubMed ID: 23562415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Age-related changes to wheelchair efficiency and sprint power output in novice able-bodied males.
    Hers N; Sawatzky BJ; Sheel AW
    Ergonomics; 2016; 59(2):291-7. PubMed ID: 26218859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.