These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 33769694)

  • 21. Interaction between disinhibited bursting and fictive locomotor patterns in the rat isolated spinal cord.
    Beato M; Nistri A
    J Neurophysiol; 1999 Nov; 82(5):2029-38. PubMed ID: 10561384
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The requirement of presynaptic metabotropic glutamate receptors for the maintenance of locomotion.
    Takahashi M; Alford S
    J Neurosci; 2002 May; 22(9):3692-9. PubMed ID: 11978845
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Locomotor rhythm evoked by ventrolateral funiculus stimulation in the neonatal rat spinal cord in vitro.
    Magnuson DS; Trinder TC
    J Neurophysiol; 1997 Jan; 77(1):200-6. PubMed ID: 9120561
    [TBL] [Abstract][Full Text] [Related]  

  • 24. V3 Interneurons Are Active and Recruit Spinal Motor Neurons during
    Wiggin TD; Montgomery JE; Brunick AJ; Peck JH; Masino MA
    eNeuro; 2022; 9(2):. PubMed ID: 35277451
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Locomotor rhythm generation linked to the output of spinal shox2 excitatory interneurons.
    Dougherty KJ; Zagoraiou L; Satoh D; Rozani I; Doobar S; Arber S; Jessell TM; Kiehn O
    Neuron; 2013 Nov; 80(4):920-33. PubMed ID: 24267650
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The spino-reticulo-spinal loop can slow down the NMDA-activated spinal locomotor network in lamprey.
    Vinay L; Grillner S
    Neuroreport; 1993 Jun; 4(6):609-12. PubMed ID: 8394151
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Central modulation of stretch receptor neurons during fictive locomotion in lamprey.
    Vinay L; Barthe JY; Grillner S
    J Neurophysiol; 1996 Aug; 76(2):1224-35. PubMed ID: 8871232
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Persistent sodium currents participate in fictive locomotion generation in neonatal mouse spinal cord.
    Zhong G; Masino MA; Harris-Warrick RM
    J Neurosci; 2007 Apr; 27(17):4507-18. PubMed ID: 17460064
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genesis of spontaneous rhythmic motor patterns in the lumbosacral spinal cord of neonate mouse.
    Bonnot A; Morin D; Viala D
    Brain Res Dev Brain Res; 1998 Jun; 108(1-2):89-99. PubMed ID: 9693787
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neural mechanisms of intersegmental coordination in lamprey: local excitability changes modify the phase coupling along the spinal cord.
    Matsushima T; Grillner S
    J Neurophysiol; 1992 Feb; 67(2):373-88. PubMed ID: 1569465
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enflurane directly depresses glutamate AMPA and NMDA currents in mouse spinal cord motor neurons independent of actions on GABAA or glycine receptors.
    Cheng G; Kendig JJ
    Anesthesiology; 2000 Oct; 93(4):1075-84. PubMed ID: 11020764
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Excitatory amino acid receptors in Xenopus embryo spinal cord and their role in the activation of swimming.
    Dale N; Roberts A
    J Physiol; 1984 Mar; 348():527-43. PubMed ID: 6325674
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optogenetic activation of excitatory premotor interneurons is sufficient to generate coordinated locomotor activity in larval zebrafish.
    Ljunggren EE; Haupt S; Ausborn J; Ampatzis K; El Manira A
    J Neurosci; 2014 Jan; 34(1):134-9. PubMed ID: 24381274
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of inhibitory neurotransmitters on the mudpuppy (Necturus maculatus) locomotor pattern in vitro.
    Jovanović K; Petrov T; Stein RB
    Exp Brain Res; 1999 Nov; 129(2):172-84. PubMed ID: 10591891
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crossed rhythmic synaptic input to motoneurons during selective activation of the contralateral spinal locomotor network.
    Kjaerulff O; Kiehn O
    J Neurosci; 1997 Dec; 17(24):9433-47. PubMed ID: 9390999
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Low micromolar concentrations of 4-aminopyridine facilitate fictive locomotion expressed by the rat spinal cord in vitro.
    Taccola G; Nistri A
    Neuroscience; 2004; 126(2):511-20. PubMed ID: 15207368
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Graphene oxide nanosheets modulate spinal glutamatergic transmission and modify locomotor behaviour in an in vivo zebrafish model.
    Cellot G; Vranic S; Shin Y; Worsley R; Rodrigues AF; Bussy C; Casiraghi C; Kostarelos K; McDearmid JR
    Nanoscale Horiz; 2020 Aug; 5(8):1250-1263. PubMed ID: 32558850
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of sacral interneurons that mediate activation of locomotor pattern generators by sacrocaudal afferent input.
    Etlin A; Finkel E; Mor Y; O'Donovan MJ; Anglister L; Lev-Tov A
    J Neurosci; 2013 Jan; 33(2):734-47. PubMed ID: 23303951
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Activity of Renshaw cells during locomotor-like rhythmic activity in the isolated spinal cord of neonatal mice.
    Nishimaru H; Restrepo CE; Kiehn O
    J Neurosci; 2006 May; 26(20):5320-8. PubMed ID: 16707784
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Coapplication of noisy patterned electrical stimuli and NMDA plus serotonin facilitates fictive locomotion in the rat spinal cord.
    Dose F; Taccola G
    J Neurophysiol; 2012 Dec; 108(11):2977-90. PubMed ID: 22956799
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.