BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 33769784)

  • 1. Targeting G-quadruplex Forming Sequences with Cas9.
    Balci H; Globyte V; Joo C
    ACS Chem Biol; 2021 Apr; 16(4):596-603. PubMed ID: 33769784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Encounters between Cas9/dCas9 and G-Quadruplexes: Implications for Transcription Regulation and Cas9-Mediated DNA Cleavage.
    Hoque ME; Mustafa G; Basu S; Balci H
    ACS Synth Biol; 2021 May; 10(5):972-978. PubMed ID: 33970608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. G-quadruplex formation in double strand DNA probed by NMM and CV fluorescence.
    Kreig A; Calvert J; Sanoica J; Cullum E; Tipanna R; Myong S
    Nucleic Acids Res; 2015 Sep; 43(16):7961-70. PubMed ID: 26202971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstitution and biochemical characterization of ribonucleoprotein complexes in Type I-E CRISPR-Cas systems.
    Xiao Y; Ke A
    Methods Enzymol; 2019; 616():27-41. PubMed ID: 30691647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring G-Quadruplex Formation with DNA Carriers and Solid-State Nanopores.
    Bošković F; Zhu J; Chen K; Keyser UF
    Nano Lett; 2019 Nov; 19(11):7996-8001. PubMed ID: 31577148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-Time Detection Reveals Responsive Cotranscriptional Formation of Persistent Intramolecular DNA and Intermolecular DNA:RNA Hybrid G-Quadruplexes Stabilized by R-Loop.
    Zhao Y; Zhang JY; Zhang ZY; Tong TJ; Hao YH; Tan Z
    Anal Chem; 2017 Jun; 89(11):6036-6042. PubMed ID: 28447783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR/Cas9 for genome editing: progress, implications and challenges.
    Zhang F; Wen Y; Guo X
    Hum Mol Genet; 2014 Sep; 23(R1):R40-6. PubMed ID: 24651067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Folding of guanine quadruplex molecules-funnel-like mechanism or kinetic partitioning? An overview from MD simulation studies.
    Šponer J; Bussi G; Stadlbauer P; Kührová P; Banáš P; Islam B; Haider S; Neidle S; Otyepka M
    Biochim Biophys Acta Gen Subj; 2017 May; 1861(5 Pt B):1246-1263. PubMed ID: 27979677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time observation of flexible domain movements in CRISPR-Cas9.
    Osuka S; Isomura K; Kajimoto S; Komori T; Nishimasu H; Shima T; Nureki O; Uemura S
    EMBO J; 2018 May; 37(10):. PubMed ID: 29650679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Folding topology, structural polymorphism, and dimerization of intramolecular DNA G-quadruplexes with inverted polarity strands and non-natural loops.
    Smirnov IP; Kolganova NA; Surzhikov SA; Grechishnikova IV; Novikov RA; Timofeev EN
    Int J Biol Macromol; 2020 Nov; 162():1972-1981. PubMed ID: 32800956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein-Mutation-Induced Conformational Changes of the DNA and Nuclease Domain in CRISPR/Cas9 Systems by Molecular Dynamics Simulations.
    Ray A; Di Felice R
    J Phys Chem B; 2020 Mar; 124(11):2168-2179. PubMed ID: 32079396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single strand targeted triplex-formation. Destabilization of guanine quadruplex structures by foldback triplex-forming oligonucleotides.
    Kandimalla ER; Agrawal S
    Nucleic Acids Res; 1995 Mar; 23(6):1068-74. PubMed ID: 7537368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A CRISPR-Cas9-integrase complex generates precise DNA fragments for genome integration.
    Jakhanwal S; Cress BF; Maguin P; Lobba MJ; Marraffini LA; Doudna JA
    Nucleic Acids Res; 2021 Apr; 49(6):3546-3556. PubMed ID: 33693715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative analysis of mouse and human preimplantation development following POU5F1 CRISPR/Cas9 targeting reveals interspecies differences.
    Stamatiadis P; Boel A; Cosemans G; Popovic M; Bekaert B; Guggilla R; Tang M; De Sutter P; Van Nieuwerburgh F; Menten B; Stoop D; Chuva de Sousa Lopes SM; Coucke P; Heindryckx B
    Hum Reprod; 2021 Apr; 36(5):1242-1252. PubMed ID: 33609360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potent Cas9 Inhibition in Bacterial and Human Cells by AcrIIC4 and AcrIIC5 Anti-CRISPR Proteins.
    Lee J; Mir A; Edraki A; Garcia B; Amrani N; Lou HE; Gainetdinov I; Pawluk A; Ibraheim R; Gao XD; Liu P; Davidson AR; Maxwell KL; Sontheimer EJ
    mBio; 2018 Dec; 9(6):. PubMed ID: 30514786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-molecule observation of G-quadruplex and R-loop formation induced by transcription.
    Hwang J; Palmer B; Myong S
    Methods Enzymol; 2024; 695():71-88. PubMed ID: 38521591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stability of Two-Quartet G-Quadruplexes and Their Dimers in Atomistic Simulations.
    Islam B; Stadlbauer P; Vorlíčková M; Mergny JL; Otyepka M; Šponer J
    J Chem Theory Comput; 2020 Jun; 16(6):3447-3463. PubMed ID: 32163706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 with improved proof-reading enhances homology-directed repair.
    Kato-Inui T; Takahashi G; Hsu S; Miyaoka Y
    Nucleic Acids Res; 2018 May; 46(9):4677-4688. PubMed ID: 29672770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformations of Human Telomeric G-Quadruplex Studied Using a Nucleotide-Independent Nitroxide Label.
    Zhang X; Xu CX; Di Felice R; Sponer J; Islam B; Stadlbauer P; Ding Y; Mao L; Mao ZW; Qin PZ
    Biochemistry; 2016 Jan; 55(2):360-72. PubMed ID: 26678746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.