BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 33769802)

  • 1. EV Separation: Release of Intact Extracellular Vesicles Immunocaptured on Magnetic Particles.
    Brambilla D; Sola L; Ferretti AM; Chiodi E; Zarovni N; Fortunato D; Criscuoli M; Dolo V; Giusti I; Murdica V; Kluszczyńska K; Czernek L; Düchler M; Vago R; Chiari M
    Anal Chem; 2021 Apr; 93(13):5476-5483. PubMed ID: 33769802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of individual extracellular vesicles by imaging flow cytometry.
    Tertel T; Görgens A; Giebel B
    Methods Enzymol; 2020; 645():55-78. PubMed ID: 33565978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A magnetic bead-mediated selective adsorption strategy for extracellular vesicle separation and purification.
    Fang X; Chen C; Liu B; Ma Z; Hu F; Li H; Gu H; Xu H
    Acta Biomater; 2021 Apr; 124():336-347. PubMed ID: 33578055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Separation of U87 glioblastoma cell-derived small and medium extracellular vesicles using elasto-inertial flow focusing (a spiral channel).
    Shiri F; Feng H; Petersen KE; Sant H; Bardi GT; Schroeder LA; Merchant ML; Gale BK; Hood JL
    Sci Rep; 2022 Apr; 12(1):6146. PubMed ID: 35414673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic particle based liquid biopsy chip for isolation of extracellular vesicles and characterization by gene amplification.
    Bathini S; Pakkiriswami S; Ouellette RJ; Ghosh A; Packirisamy M
    Biosens Bioelectron; 2021 Dec; 194():113585. PubMed ID: 34517262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emerging strategies for labeling and tracking of extracellular vesicles.
    Li YJ; Wu JY; Wang JM; Hu XB; Xiang DX
    J Control Release; 2020 Dec; 328():141-159. PubMed ID: 32882270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffusion-Based Separation of Extracellular Vesicles by Nanoporous Membrane Chip.
    Kim G; Park MC; Jang S; Han D; Kim H; Kim W; Chun H; Kim S
    Biosensors (Basel); 2021 Sep; 11(9):. PubMed ID: 34562937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Potentiality of Plant-Derived Nanovesicles in Human Health-A Comparison with Human Exosomes and Artificial Nanoparticles.
    Logozzi M; Di Raimo R; Mizzoni D; Fais S
    Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35563310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electric Field-Induced Disruption and Releasing Viable Content from Extracellular Vesicles.
    Wang C; Wang A; Wei F; Wong DTW; Tu M
    Methods Mol Biol; 2017; 1660():367-376. PubMed ID: 28828672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunocapture-based ELISA to characterize and quantify exosomes in both cell culture supernatants and body fluids.
    Logozzi M; Di Raimo R; Mizzoni D; Fais S
    Methods Enzymol; 2020; 645():155-180. PubMed ID: 33565970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel population of extracellular vesicles smaller than exosomes promotes cell proliferation.
    Lee SS; Won JH; Lim GJ; Han J; Lee JY; Cho KO; Bae YK
    Cell Commun Signal; 2019 Aug; 17(1):95. PubMed ID: 31416445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid Fluorescence-based Characterization of Single Extracellular Vesicles in Human Blood with Nanoparticle-tracking Analysis.
    Weber A; Wehmeyer JC; Schmidt V; Lichtenberg A; Akhyari P
    J Vis Exp; 2019 Jan; (143):. PubMed ID: 30663708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-step magnetic bead-based (2MBB) techniques for immunocapture of extracellular vesicles and quantification of microRNAs for cardiovascular diseases: A pilot study.
    Chen S; Shiesh SC; Lee GB; Chen C
    PLoS One; 2020; 15(2):e0229610. PubMed ID: 32101583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Progress in extracellular vesicle imaging methods].
    Wang K; Wei Y; Zhang P; Wang J; Hu J; Wang L; Li B
    Nan Fang Yi Ke Da Xue Xue Bao; 2020 Feb; 40(2):279-286. PubMed ID: 32376541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extraction of small extracellular vesicles by label-free and biocompatible on-chip magnetic separation.
    Zeng L; Hu S; Chen X; Zhang P; Gu G; Wang Y; Zhang H; Zhang Y; Yang H
    Lab Chip; 2022 Jun; 22(13):2476-2488. PubMed ID: 35521650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel isolation method for spontaneously released extracellular vesicles from brain tissue and its implications for stress-driven brain pathology.
    Gomes PA; Bodo C; Nogueras-Ortiz C; Samiotaki M; Chen M; Soares-Cunha C; Silva JM; Coimbra B; Stamatakis G; Santos L; Panayotou G; Tzouanou F; Waites CL; Gatsogiannis C; Sousa N; Kapogiannis D; Costa-Silva B; Sotiropoulos I
    Cell Commun Signal; 2023 Feb; 21(1):35. PubMed ID: 36782237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Magnetic Separation-Assisted High-Speed Homogenization Method for Large-Scale Production of Endosome-Derived Vesicles.
    Wang D; Yao S; Guo P
    J Vis Exp; 2024 Jan; (203):. PubMed ID: 38345214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macrophage-derived exosome-mimetic hybrid vesicles for tumor targeted drug delivery.
    Rayamajhi S; Nguyen TDT; Marasini R; Aryal S
    Acta Biomater; 2019 Aug; 94():482-494. PubMed ID: 31129363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Separation of extracellular nanovesicles and apoptotic bodies from cancer cell culture broth using tunable microfluidic systems.
    Shin S; Han D; Park MC; Mun JY; Choi J; Chun H; Kim S; Hong JW
    Sci Rep; 2017 Aug; 7(1):9907. PubMed ID: 28855522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimized Protocol for Isolation of Small Extracellular Vesicles from Human and Murine Lymphoid Tissues.
    Bordas M; Genard G; Ohl S; Nessling M; Richter K; Roider T; Dietrich S; Maaß KK; Seiffert M
    Int J Mol Sci; 2020 Aug; 21(15):. PubMed ID: 32759826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.