These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 33769812)
21. Mesoporous Nanostructured Composite Derived from Thermal Treatment CoFe Prussian Blue Analogue Cages and Electrodeposited NiCo-S as an Efficient Electrocatalyst for an Oxygen Evolution Reaction. Hafezi Kahnamouei M; Shahrokhian S ACS Appl Mater Interfaces; 2020 Apr; 12(14):16250-16263. PubMed ID: 32096627 [TBL] [Abstract][Full Text] [Related]
22. Enhancing Oxygen Evolution Reaction Performance in Prussian Blue Analogues: Triple-Play of Metal Exsolution, Hollow Interiors, and Anionic Regulation. Wang S; Huo W; Feng H; Xie Z; Shang JK; Formo EV; Camargo PHC; Fang F; Jiang J Adv Mater; 2023 Nov; 35(45):e2304494. PubMed ID: 37473821 [TBL] [Abstract][Full Text] [Related]
23. Ruthenium Incorporated Cobalt Phosphide Nanocubes Derived From a Prussian Blue Analog for Enhanced Hydrogen Evolution. Yan Y; Huang J; Wang X; Gao T; Zhang Y; Yao T; Song B Front Chem; 2018; 6():521. PubMed ID: 30425981 [TBL] [Abstract][Full Text] [Related]
24. Core-Shell-Structured Prussian Blue Analogues Ternary Metal Phosphides as Efficient Bifunctional Electrocatalysts for OER and HER. Zhou X; Zi Y; Xu L; Li T; Yang J; Tang J Inorg Chem; 2021 Aug; 60(15):11661-11671. PubMed ID: 34282615 [TBL] [Abstract][Full Text] [Related]
25. Enhanced Electrochemical Water Oxidation Activity by Structural Engineered Prussian Blue Analogue/rGO Heterostructure. An X; Zhu W; Tang C; Liu L; Chen T; Wang X; Zhao J; Zhang G Molecules; 2022 Aug; 27(17):. PubMed ID: 36080240 [TBL] [Abstract][Full Text] [Related]
26. Ir-Doped Bilayer Heterojunction Hollow Nanoboxes for Electrocatalytic Oxygen Evolution. Liang W; Wang C; Li J; Yin J; Wu Z; Li S; Du Y Inorg Chem; 2023 Dec; 62(49):20072-20079. PubMed ID: 38015173 [TBL] [Abstract][Full Text] [Related]
27. Bimetallic sulfide/N-doped carbon composite derived from Prussian blue analogues/cellulose nanofibers film toward enhanced oxygen evolution reaction. Li Z; Chen F; Li C; Zhang Z; Kong F; Pu X; Lu Q Dalton Trans; 2024 Mar; 53(13):6041-6049. PubMed ID: 38470841 [TBL] [Abstract][Full Text] [Related]
28. Plasma-Induced Oxygen Vacancies in N-Doped Hollow NiCoPBA Nanocages Derived from Prussian Blue Analogue for Efficient OER in Alkaline Media. Le HT; Lee JE; Yun SY; Kwon O; Park JK; Jeong YK Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298197 [TBL] [Abstract][Full Text] [Related]
29. Boosting the activity of Prussian-blue analogue as efficient electrocatalyst for water and urea oxidation. Feng Y; Wang X; Dong P; Li J; Feng L; Huang J; Cao L; Feng L; Kajiyoshi K; Wang C Sci Rep; 2019 Nov; 9(1):15965. PubMed ID: 31685920 [TBL] [Abstract][Full Text] [Related]
30. Dual-oxidation-induced lattice disordering in a Prussian blue analog for ultrastable oxygen evolution reaction performance. Kang L; Li J; Wang Y; Gao W; Hao P; Lei F; Xie J; Tang B J Colloid Interface Sci; 2023 Jan; 630(Pt A):257-265. PubMed ID: 36242885 [TBL] [Abstract][Full Text] [Related]
31. Amorphous Fe-Ni-P-B-O Nanocages as Efficient Electrocatalysts for Oxygen Evolution Reaction. Ren H; Sun X; Du C; Zhao J; Liu D; Fang W; Kumar S; Chua R; Meng S; Kidkhunthod P; Song L; Li S; Madhavi S; Yan Q ACS Nano; 2019 Nov; 13(11):12969-12979. PubMed ID: 31702132 [TBL] [Abstract][Full Text] [Related]
32. Optimized bimetallic nickel-iron phosphides with rich defects as enhanced electrocatalysts for oxygen evolution reaction. Gao WK; Chi JQ; Wang ZB; Lin JH; Liu DP; Zeng JB; Yu JF; Wang L; Chai YM; Dong B J Colloid Interface Sci; 2019 Mar; 537():11-19. PubMed ID: 30414504 [TBL] [Abstract][Full Text] [Related]
33. Different Growth Behavior of MOF-on-MOF Heterostructures to Enhance Oxygen Evolution. Mao L; Chen D; Guo Y; Han C; Zhou X; Yang Z; Huang S; Qian J ChemSusChem; 2023 Jan; 16(1):e202201947. PubMed ID: 36302718 [TBL] [Abstract][Full Text] [Related]
34. Prussian blue analogue-derived Ni and Co bimetallic oxide nanoplate arrays block-built from porous and hollow nanocubes for the efficient oxygen evolution reaction. Shen Y; Guo SG; Du F; Yuan XB; Zhang Y; Hu J; Shen Q; Luo W; Alsaedi A; Hayat T; Wen G; Li GL; Zhou Y; Zou Z Nanoscale; 2019 Jun; 11(24):11765-11773. PubMed ID: 31184359 [TBL] [Abstract][Full Text] [Related]
35. Porous Structured Ni-Fe-P Nanocubes Derived from a Prussian Blue Analogue as an Electrocatalyst for Efficient Overall Water Splitting. Xuan C; Wang J; Xia W; Peng Z; Wu Z; Lei W; Xia K; Xin HL; Wang D ACS Appl Mater Interfaces; 2017 Aug; 9(31):26134-26142. PubMed ID: 28718291 [TBL] [Abstract][Full Text] [Related]
36. Oxygen-Doped Nickel Iron Phosphide Nanocube Arrays Grown on Ni Foam for Oxygen Evolution Electrocatalysis. Xi W; Yan G; Lang Z; Ma Y; Tan H; Zhu H; Wang Y; Li Y Small; 2018 Oct; 14(42):e1802204. PubMed ID: 30239123 [TBL] [Abstract][Full Text] [Related]
37. In Situ Transformation of Prussian-Blue Analogue-Derived Bimetallic Carbide Nanocubes by Water Oxidation: Applications for Energy Storage and Conversion. He B; Kuang P; Li X; Chen H; Yu J; Fan K Chemistry; 2020 Mar; 26(18):4052-4062. PubMed ID: 31437320 [TBL] [Abstract][Full Text] [Related]
38. Synthesis of Hollow Co-Fe Prussian Blue Analogue Cubes by using Silica Spheres as a Sacrificial Template. Azhar A; Zakaria MB; Ebeid EM; Chikyow T; Bando Y; Alshehri AA; Alghamdi YG; Cai ZX; Kumar NA; Lin J; Kim H; Yamauchi Y ChemistryOpen; 2018 Aug; 7(8):599-603. PubMed ID: 30094126 [TBL] [Abstract][Full Text] [Related]
39. Tuning Metal Elements in Open Frameworks for Efficient Oxygen Evolution and Oxygen Reduction Reaction Catalysts. Ren M; Lei J; Zhang J; Yakobson BI; Tour JM ACS Appl Mater Interfaces; 2021 Sep; 13(36):42715-42723. PubMed ID: 34473475 [TBL] [Abstract][Full Text] [Related]