BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 33770316)

  • 1. Design and development of novel inhibitors of aldo-ketoreductase 1C1 as potential lead molecules in treatment of breast cancer.
    Verma P; Hassan MI; Singh A; Singh IK
    Mol Cell Biochem; 2021 Aug; 476(8):2975-2987. PubMed ID: 33770316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overview of human 20 alpha-hydroxysteroid dehydrogenase (AKR1C1): Functions, regulation, and structural insights of inhibitors.
    Chu X; He S; Liu Y; Liu Y; Feng F; Guo Q; Zhao L; Sun H
    Chem Biol Interact; 2022 Jan; 351():109746. PubMed ID: 34780792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective inhibitors of aldo-keto reductases AKR1C1 and AKR1C3 discovered by virtual screening of a fragment library.
    Brožič P; Turk S; Adeniji AO; Konc J; Janežič D; Penning TM; Lanišnik Rižner T; Gobec S
    J Med Chem; 2012 Sep; 55(17):7417-24. PubMed ID: 22881866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovery of new inhibitors of aldo-keto reductase 1C1 by structure-based virtual screening.
    Brozic P; Turk S; Lanisnik Rizner T; Gobec S
    Mol Cell Endocrinol; 2009 Mar; 301(1-2):245-50. PubMed ID: 18765269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibitors of human 20α-hydroxysteroid dehydrogenase (AKR1C1).
    El-Kabbani O; Dhagat U; Hara A
    J Steroid Biochem Mol Biol; 2011 May; 125(1-2):105-11. PubMed ID: 21050889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Progestins as inhibitors of the human 20-ketosteroid reductases, AKR1C1 and AKR1C3.
    Beranič N; Gobec S; Rižner TL
    Chem Biol Interact; 2011 May; 191(1-3):227-33. PubMed ID: 21182831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A salicylic acid-based analogue discovered from virtual screening as a potent inhibitor of human 20alpha-hydroxysteroid dehydrogenase.
    Dhagat U; Carbone V; Chung RP; Matsunaga T; Endo S; Hara A; El-Kabbani O
    Med Chem; 2007 Nov; 3(6):546-50. PubMed ID: 18045204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New cyclopentane derivatives as inhibitors of steroid metabolizing enzymes AKR1C1 and AKR1C3.
    Stefane B; Brozic P; Vehovc M; Rizner TL; Gobec S
    Eur J Med Chem; 2009 Jun; 44(6):2563-71. PubMed ID: 19237229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Derivatives of pyrimidine, phthalimide and anthranilic acid as inhibitors of human hydroxysteroid dehydrogenase AKR1C1.
    Brozic P; Cesar J; Kovac A; Davies M; Johnson AP; Fishwick CW; Lanisnik Rizner T; Gobec S
    Chem Biol Interact; 2009 Mar; 178(1-3):158-64. PubMed ID: 19007763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and evaluation of AKR1C inhibitory properties of A-ring halogenated oestrone derivatives.
    Sinreih M; Jójárt R; Kele Z; Büdefeld T; Paragi G; Mernyák E; Rižner TL
    J Enzyme Inhib Med Chem; 2021 Dec; 36(1):1500-1508. PubMed ID: 34227437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibitors of aldo-keto reductases AKR1C1-AKR1C4.
    Brožič P; Turk S; Rižner TL; Gobec S
    Curr Med Chem; 2011; 18(17):2554-65. PubMed ID: 21568892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of selective MMP-9 inhibitors through multiple e-pharmacophore, ligand-based pharmacophore, molecular docking, and density functional theory approaches.
    Jana S; Singh SK
    J Biomol Struct Dyn; 2019 Mar; 37(4):944-965. PubMed ID: 29475408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytoestrogens as inhibitors of the human progesterone metabolizing enzyme AKR1C1.
    Brozic P; Smuc T; Gobec S; Rizner TL
    Mol Cell Endocrinol; 2006 Oct; 259(1-2):30-42. PubMed ID: 16962702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-guided design, synthesis, and evaluation of salicylic acid-based inhibitors targeting a selectivity pocket in the active site of human 20alpha-hydroxysteroid dehydrogenase (AKR1C1).
    El-Kabbani O; Scammells PJ; Gosling J; Dhagat U; Endo S; Matsunaga T; Soda M; Hara A
    J Med Chem; 2009 May; 52(10):3259-64. PubMed ID: 19397269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-throughput virtual screening with e-pharmacophore and molecular simulations study in the designing of pancreatic lipase inhibitors.
    Veeramachaneni GK; Raj KK; Chalasani LM; Bondili JS; Talluri VR
    Drug Des Devel Ther; 2015; 9():4397-412. PubMed ID: 26273199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proposing novel MDM2 inhibitors: Combined physics-driven high-throughput virtual screening and in vitro studies.
    Aydin G; Paksoy MN; Orhan MD; Avsar T; Yurtsever M; Durdagi S
    Chem Biol Drug Des; 2020 Jul; 96(1):684-700. PubMed ID: 32691963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potent and novel 11β-HSD1 inhibitors identified from shape and docking based virtual screening.
    Xia G; Xue M; Liu L; Yu J; Liu H; Li P; Wang J; Li Y; Xiong B; Shen J
    Bioorg Med Chem Lett; 2011 Oct; 21(19):5739-44. PubMed ID: 21873057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of potential inhibitors of squalene synthase based on virtual screening and in vitro studies.
    Huang H; Chu CL; Chen L; Shui D
    Comput Biol Chem; 2019 Jun; 80():390-397. PubMed ID: 31125877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptional regulation of aldo-keto reductase 1C1 in HT29 human colon cancer cells resistant to methotrexate: role in the cell cycle and apoptosis.
    Selga E; Noé V; Ciudad CJ
    Biochem Pharmacol; 2008 Jan; 75(2):414-26. PubMed ID: 17945194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovery of novel NAMPT inhibitors based on pharmacophore modeling and virtual screening techniques.
    Yi Q; Zhou L; Shao X; Wang T; Bao G; Shi H; Zhou S; Li X; Tian Y
    Comb Chem High Throughput Screen; 2014; 17(10):868-78. PubMed ID: 25413783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.