These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 33770376)
1. Transcriptome sequencing of wild soybean revealed gene expression dynamics under low nitrogen stress. Sun Q; Lu H; Zhang Q; Wang D; Chen J; Xiao J; Ding X; Li Q J Appl Genet; 2021 Sep; 62(3):389-404. PubMed ID: 33770376 [TBL] [Abstract][Full Text] [Related]
2. Transcriptome analysis of potato shoots, roots and stolons under nitrogen stress. Tiwari JK; Buckseth T; Zinta R; Saraswati A; Singh RK; Rawat S; Dua VK; Chakrabarti SK Sci Rep; 2020 Jan; 10(1):1152. PubMed ID: 31980689 [TBL] [Abstract][Full Text] [Related]
3. Analysis of Whole Transcriptome RNA-seq Data Reveals Many Alternative Splicing Events in Soybean Roots under Drought Stress Conditions. Song L; Pan Z; Chen L; Dai Y; Wan J; Ye H; Nguyen HT; Zhang G; Chen H Genes (Basel); 2020 Dec; 11(12):. PubMed ID: 33352659 [TBL] [Abstract][Full Text] [Related]
4. Wild soybean roots depend on specific transcription factors and oxidation reduction related genesin response to alkaline stress. DuanMu H; Wang Y; Bai X; Cheng S; Deyholos MK; Wong GK; Li D; Zhu D; Li R; Yu Y; Cao L; Chen C; Zhu Y Funct Integr Genomics; 2015 Nov; 15(6):651-60. PubMed ID: 25874911 [TBL] [Abstract][Full Text] [Related]
5. Identification of wild soybean (Glycine soja) TIFY family genes and their expression profiling analysis under bicarbonate stress. Zhu D; Bai X; Luo X; Chen Q; Cai H; Ji W; Zhu Y Plant Cell Rep; 2013 Feb; 32(2):263-72. PubMed ID: 23090726 [TBL] [Abstract][Full Text] [Related]
6. Identification of differentially expressed genes between sorghum genotypes with contrasting nitrogen stress tolerance by genome-wide transcriptional profiling. Gelli M; Duo Y; Konda AR; Zhang C; Holding D; Dweikat I BMC Genomics; 2014 Mar; 15():179. PubMed ID: 24597475 [TBL] [Abstract][Full Text] [Related]
7. Complex Gene Regulation Underlying Mineral Nutrient Homeostasis in Soybean Root Response to Acidity Stress. Chen Q; Wu W; Zhao T; Tan W; Tian J; Liang C Genes (Basel); 2019 May; 10(5):. PubMed ID: 31137896 [TBL] [Abstract][Full Text] [Related]
8. Integrated morphological, physiological and transcriptomic analyses reveal the responses of Toona sinensis seedlings to low-nitrogen stress. Zhao H; Ge M; Zhang F; Du D; Zhao Z; Shen C; Hao Q; Xiao M; Shi X; Wang J; Fan M Genomics; 2024 Sep; 116(5):110899. PubMed ID: 39047875 [TBL] [Abstract][Full Text] [Related]
9. Physiological characteristics and metabolomics reveal the tolerance mechanism to low nitrogen in Glycine soja leaves. Zhao M; Guo R; Li M; Liu Y; Wang X; Fu H; Wang S; Liu X; Shi L Physiol Plant; 2020 Apr; 168(4):819-834. PubMed ID: 31593297 [TBL] [Abstract][Full Text] [Related]
10. Genome-wide transcriptome analysis of soybean primary root under varying water-deficit conditions. Song L; Prince S; Valliyodan B; Joshi T; Maldonado dos Santos JV; Wang J; Lin L; Wan J; Wang Y; Xu D; Nguyen HT BMC Genomics; 2016 Jan; 17():57. PubMed ID: 26769043 [TBL] [Abstract][Full Text] [Related]
11. Transcriptome Differences in Response Mechanisms to Low-Nitrogen Stress in Two Wheat Varieties. Yan H; Shi H; Hu C; Luo M; Xu C; Wang S; Li N; Tang W; Zhou Y; Wang C; Xu Z; Chen J; Ma Y; Sun D; Chen M Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830160 [TBL] [Abstract][Full Text] [Related]
12. Comparative RNA-Seq Analysis Reveals That Regulatory Network of Maize Root Development Controls the Expression of Genes in Response to N Stress. He X; Ma H; Zhao X; Nie S; Li Y; Zhang Z; Shen Y; Chen Q; Lu Y; Lan H; Zhou S; Gao S; Pan G; Lin H PLoS One; 2016; 11(3):e0151697. PubMed ID: 26990640 [TBL] [Abstract][Full Text] [Related]
13. Genome-wide analysis and identification of the low potassium stress responsive gene SiMYB3 in foxtail millet (Setariaitalica L.). Cao X; Hu L; Chen X; Zhang R; Cheng D; Li H; Xu Z; Li L; Zhou Y; Liu A; Song J; Liu C; Liu J; Zhao Z; Chen M; Ma Y BMC Genomics; 2019 Feb; 20(1):136. PubMed ID: 30767761 [TBL] [Abstract][Full Text] [Related]
14. Comprehensive RNA-seq analysis revealed molecular pathways and genes associated with drought tolerance in wild soybean (Glycine soja Sieb. and Zucc.). Aleem M; Raza MM; Haider MS; Atif RM; Ali Z; Bhat JA; Zhao T Physiol Plant; 2021 Jun; 172(2):707-732. PubMed ID: 32984966 [TBL] [Abstract][Full Text] [Related]
15. Genome-wide identification and expression analyses of nitrate transporter family genes in wild soybean (Glycine soja). You H; Liu Y; Minh TN; Lu H; Zhang P; Li W; Xiao J; Ding X; Li Q J Appl Genet; 2020 Dec; 61(4):489-501. PubMed ID: 32779148 [TBL] [Abstract][Full Text] [Related]
16. Comparative study of leaf nutrient reabsorption by two different ecotypes of wild soybean under low-nitrogen stress. Liu Y; Gao S; Hu Y; Zhang T; Guo J; Shi L; Li M PeerJ; 2023; 11():e15486. PubMed ID: 37397019 [TBL] [Abstract][Full Text] [Related]
17. Comparative Transcriptomics of Rice Genotypes with Contrasting Responses to Nitrogen Stress Reveals Genes Influencing Nitrogen Uptake through the Regulation of Root Architecture. Subudhi PK; Garcia RS; Coronejo S; Tapia R Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32796695 [TBL] [Abstract][Full Text] [Related]
18. Transcriptome profiling analysis for two Tibetan wild barley genotypes in responses to low nitrogen. Quan X; Zeng J; Ye L; Chen G; Han Z; Shah JM; Zhang G BMC Plant Biol; 2016 Jan; 16():30. PubMed ID: 26817455 [TBL] [Abstract][Full Text] [Related]
19. Early Transcriptomic Response to Phosphate Deprivation in Soybean Leaves as Revealed by RNA-Sequencing. Zeng H; Zhang X; Zhang X; Pi E; Xiao L; Zhu Y Int J Mol Sci; 2018 Jul; 19(7):. PubMed ID: 30041471 [TBL] [Abstract][Full Text] [Related]
20. Global transcriptome profiling of wild soybean (Glycine soja) roots under NaHCO3 treatment. Ge Y; Li Y; Zhu YM; Bai X; Lv DK; Guo D; Ji W; Cai H BMC Plant Biol; 2010 Jul; 10():153. PubMed ID: 20653984 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]