BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 33770464)

  • 1. Characterization of Nanoporous Materials.
    Thommes M; Schlumberger C
    Annu Rev Chem Biomol Eng; 2021 Jun; 12():137-162. PubMed ID: 33770464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent advances in the textural characterization of hierarchically structured nanoporous materials.
    Cychosz KA; Guillet-Nicolas R; García-Martínez J; Thommes M
    Chem Soc Rev; 2017 Jan; 46(2):389-414. PubMed ID: 27757469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reliable Surface Area Assessment of Wet and Dry Nonporous and Nanoporous Particles: Nuclear Magnetic Resonance Relaxometry and Gas Physisorption.
    Schlumberger C; Sandner L; Michalowski A; Thommes M
    Langmuir; 2023 Apr; 39(13):4611-4621. PubMed ID: 36943005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Textural characterization of native and n-alky-bonded silica monoliths by mercury intrusion/extrusion, inverse size exclusion chromatography and nitrogen adsorption.
    Thommes M; Skudas R; Unger KK; Lubda D
    J Chromatogr A; 2008 May; 1191(1-2):57-66. PubMed ID: 18423477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of Hydrophilicity/Hydrophobicity in Mesoporous Silica by Combining Adsorption, Liquid Intrusion, and Solid-State NMR Spectroscopy.
    Collados CC; Huber C; Söllner J; Grass JP; Inayat A; Durdyyev R; Smith AS; Wisser D; Hartmann M; Thommes M
    Langmuir; 2024 Jun; 40(25):12853-12867. PubMed ID: 38861921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Use of mercury porosimetry, assisted by nitrogen adsorption in the investigation of the pore structure of tablets].
    Szepes A; Kovács J; Szabóné Revész P
    Acta Pharm Hung; 2006; 76(3):119-25. PubMed ID: 17094658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoporous Metal Phosphonate Hybrid Materials as a Novel Platform for Emerging Applications: A Critical Review.
    Lv XW; Weng CC; Zhu YP; Yuan ZY
    Small; 2021 Jun; 17(22):e2005304. PubMed ID: 33605008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterisation of pore structures in nanoporous materials for advanced bionanotechnology.
    Heo K; Yoon J; Jin KS; Jin S; Ree M
    IEE Proc Nanobiotechnol; 2006 Aug; 153(4):121-8. PubMed ID: 16948496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unified method for the total pore volume and pore size distribution of hierarchical zeolites from argon adsorption and mercury intrusion.
    Kenvin J; Jagiello J; Mitchell S; Pérez-Ramírez J
    Langmuir; 2015 Feb; 31(4):1242-7. PubMed ID: 25603366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface Properties of Synthesized Nanoporous Carbon and Silica Matrices.
    Sterczyńska A; Śliwińska-Bartkowiak M; Zienkiewicz-Strzałka M; Deryło-Marczewska A
    J Vis Exp; 2019 Mar; (145):. PubMed ID: 30985759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pore Morphology Determines Spontaneous Liquid Extrusion from Nanopores.
    Amabili M; Grosu Y; Giacomello A; Meloni S; Zaki A; Bonilla F; Faik A; Casciola CM
    ACS Nano; 2019 Feb; 13(2):1728-1738. PubMed ID: 30653291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption, intrusion and freezing in porous silica: the view from the nanoscale.
    Coasne B; Galarneau A; Pellenq RJ; Di Renzo F
    Chem Soc Rev; 2013 May; 42(9):4141-71. PubMed ID: 23348418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining mercury thermoporometry with integrated gas sorption and mercury porosimetry to improve accuracy of pore-size distributions for disordered solids.
    Bafarawa B; Nepryahin A; Ji L; Holt EM; Wang J; Rigby SP
    J Colloid Interface Sci; 2014 Jul; 426():72-9. PubMed ID: 24863767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction by molecular dynamics modeling and simulations of the porous structures formed by dextran polymer chains attached on the surface of the pores of a base matrix: characterization of porous structures.
    Zhang X; Wang JC; Lacki KM; Liapis AI
    J Phys Chem B; 2005 Nov; 109(44):21028-39. PubMed ID: 16853725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Confinement Correction to Mercury Intrusion Capillary Pressure of Shale Nanopores.
    Wang S; Javadpour F; Feng Q
    Sci Rep; 2016 Feb; 6():20160. PubMed ID: 26832445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Porosity and Pore Size Distribution of Native and Delignified Beech Wood Determined by Mercury Intrusion Porosimetry.
    Vitas S; Segmehl JS; Burgert I; Cabane E
    Materials (Basel); 2019 Jan; 12(3):. PubMed ID: 30700052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemistry at nanoporous interfaces: new opportunity for electrocatalysis.
    Bae JH; Han JH; Chung TD
    Phys Chem Chem Phys; 2012 Jan; 14(2):448-63. PubMed ID: 22124339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unraveling the influence of surface functionalities on gas Physisorption: A comprehensive study on SBA-15 nanoporous material from Monte Carlo simulation for improved Textural-Energetic characterization.
    Delgado Mons R; Villarroel-Rocha J; Sapag K; Llewellyn PL; Rouquerol J; Pablo Toso J; Cornette V; López RH
    J Colloid Interface Sci; 2024 Sep; 669():486-494. PubMed ID: 38723537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spontaneous Dipole Reorientation in Confined Water and Its Effect on Wetting/Dewetting of Hydrophobic Nanopores.
    Bushuev YG; Grosu Y; Chorążewski M
    ACS Appl Mater Interfaces; 2024 Feb; 16(6):7604-7616. PubMed ID: 38300737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural Characterization of Proteins Adsorbed at Nanoporous Materials.
    Yamaguchi A; Saiga M; Inaba D; Aizawa M; Shibuya Y; Itoh T
    Anal Sci; 2021; 37(1):49-59. PubMed ID: 33431779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.