BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 33770677)

  • 1. Influence of dissolved black carbon on the aggregation and deposition of polystyrene nanoplastics: Comparison with dissolved humic acid.
    Xu Y; Ou Q; He Q; Wu Z; Ma J; Huangfu X
    Water Res; 2021 May; 196():117054. PubMed ID: 33770677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of CeO
    Li X; He E; Xia B; Van Gestel CAM; Peijnenburg WJGM; Cao X; Qiu H
    Water Res; 2020 Nov; 186():116324. PubMed ID: 32871291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aggregation Behavior of Dissolved Black Carbon: Implications for Vertical Mass Flux and Fractionation in Aquatic Systems.
    Xu F; Wei C; Zeng Q; Li X; Alvarez PJJ; Li Q; Qu X; Zhu D
    Environ Sci Technol; 2017 Dec; 51(23):13723-13732. PubMed ID: 29132211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aggregation and Deposition Kinetics of Polystyrene Microplastics and Nanoplastics in Aquatic Environment.
    Liu L; Song J; Zhang M; Jiang W
    Bull Environ Contam Toxicol; 2021 Oct; 107(4):741-747. PubMed ID: 33914100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of dissolved black carbon and its binding behaviors to ceftazidime and diclofenac pharmaceuticals: Employing the molecular weight fractionation.
    Ye Y; Cai X; Wang Z; Xie X
    Environ Pollut; 2022 Dec; 315():120449. PubMed ID: 36265731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption of dissolved organic matter (DOM) on polystyrene microplastics in aquatic environments: Kinetic, isotherm and site energy distribution analysis.
    Abdurahman A; Cui K; Wu J; Li S; Gao R; Dai J; Liang W; Zeng F
    Ecotoxicol Environ Saf; 2020 Jul; 198():110658. PubMed ID: 32339926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aqueous aggregation and deposition kinetics of fresh and carboxyl-modified nanoplastics in the presence of divalent heavy metals.
    Zhu S; Mo Y; Luo W; Xiao Z; Jin C; Qiu R
    Water Res; 2022 Aug; 222():118877. PubMed ID: 35872518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissolved Black Carbon as an Efficient Sensitizer in the Photochemical Transformation of 17β-Estradiol in Aqueous Solution.
    Zhou Z; Chen B; Qu X; Fu H; Zhu D
    Environ Sci Technol; 2018 Sep; 52(18):10391-10399. PubMed ID: 30130961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparing electron donating/accepting capacities (EDC/EAC) between crop residue-derived dissolved black carbon and standard humic substances.
    Zheng X; Liu Y; Fu H; Qu X; Yan M; Zhang S; Zhu D
    Sci Total Environ; 2019 Jul; 673():29-35. PubMed ID: 30981921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strong binding of apolar hydrophobic organic contaminants by dissolved black carbon released from biochar: A mechanism of pseudomicelle partition and environmental implications.
    Fu H; Wei C; Qu X; Li H; Zhu D
    Environ Pollut; 2018 Jan; 232():402-410. PubMed ID: 28966024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissolved black carbon mediated photo-oxidation of arsenic(III) to arsenic(V) in water: The key role of triplet states.
    Zhou Z; Yang L; Qu X; Fu H
    Chemosphere; 2024 Jan; 347():140718. PubMed ID: 37972870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The heteroaggregation and deposition behavior of nanoplastics on Al
    Wu J; Liu J; Wu P; Sun L; Chen M; Shang Z; Ye Q; Zhu N
    J Hazard Mater; 2022 Aug; 435():128964. PubMed ID: 35490632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of protein configuration on aggregation kinetics of nanoplastics in aquatic environment.
    Huang Z; Chen C; Liu Y; Liu S; Zeng D; Yang C; Huang W; Dang Z
    Water Res; 2022 Jul; 219():118522. PubMed ID: 35550965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationships between dissolved black carbon and dissolved organic matter in streams.
    Yamashita Y; Kojima D; Yoshida N; Shibata H
    Chemosphere; 2021 May; 271():129824. PubMed ID: 33736211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoplastics display strong stability in aqueous environments: Insights from aggregation behaviour and theoretical calculations.
    Mao Y; Li H; Huangfu X; Liu Y; He Q
    Environ Pollut; 2020 Mar; 258():113760. PubMed ID: 31855670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of environmental and biological macromolecules on aggregation kinetics of nanoplastics in aquatic systems.
    Liu Y; Huang Z; Zhou J; Tang J; Yang C; Chen C; Huang W; Dang Z
    Water Res; 2020 Nov; 186():116316. PubMed ID: 32829180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cation-π mechanism promotes the adsorption of humic acid on polystyrene nanoplastics to differently affect their aggregation: Evidence from experimental characterization and DFT calculation.
    Kong Y; Li X; Tao M; Cao X; Wang Z; Xing B
    J Hazard Mater; 2023 Oct; 459():132071. PubMed ID: 37487331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of temperature and particle concentration on aggregation of nanoplastics in freshwater and seawater.
    Lee CH; Fang JK
    Sci Total Environ; 2022 Apr; 817():152562. PubMed ID: 34952072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined effects of photoaging and natural organic matter on the colloidal stability of nanoplastics in aquatic environments.
    Xu Y; Ou Q; Li X; Wang X; van der Hoek JP; Liu G
    Water Res; 2022 Nov; 226():119313. PubMed ID: 36369686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of sunlight and humic acid on the deposition kinetics of aqueous fullerene nanoparticles (nC60).
    Qu X; Alvarez PJ; Li Q
    Environ Sci Technol; 2012 Dec; 46(24):13455-62. PubMed ID: 23157776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.