BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 33770694)

  • 21. Removal of phosphate from water by paper mill sludge biochar.
    Zhang M; Lin K; Li X; Wu L; Yu J; Cao S; Zhang D; Xu L; Parikh SJ; Ok YS
    Environ Pollut; 2022 Jan; 293():118521. PubMed ID: 34793910
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Carbothermal Synthesis of Sludge Biochar Supported Nanoscale Zero-Valent Iron for the Removal of Cd
    Shao Y; Tian C; Yang Y; Shao Y; Zhang T; Shi X; Zhang W; Zhu Y
    Int J Environ Res Public Health; 2022 Nov; 19(23):. PubMed ID: 36498112
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced phenanthrene removal in aqueous solution using modified biochar supported nano zero-valent iron.
    Wu H; Feng Q; Yang H; Lu P; Gao B; Alansari A
    Environ Technol; 2019 Sep; 40(23):3114-3123. PubMed ID: 30430915
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simultaneous adsorption and oxidation of antimonite onto nano zero-valent iron sludge-based biochar: Indispensable role of reactive oxygen species and redox-active moieties.
    Wei D; Li B; Luo L; Zheng Y; Huang L; Zhang J; Yang Y; Huang H
    J Hazard Mater; 2020 Jun; 391():122057. PubMed ID: 32044627
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Self-engineered iron oxide nanoparticle incorporated on mesoporous biochar derived from textile mill sludge for the removal of an emerging pharmaceutical pollutant.
    Singh V; Srivastava VC
    Environ Pollut; 2020 Apr; 259():113822. PubMed ID: 31887588
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient removal of uranium(VI) from aqueous solution by a novel phosphate-modified biochar supporting zero-valent iron composite.
    Tang Z; Dai Z; Gong M; Chen H; Zhou X; Wang Y; Jiang C; Yu W; Li L
    Environ Sci Pollut Res Int; 2023 Mar; 30(14):40478-40489. PubMed ID: 36609758
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Iron/zinc and phosphoric acid modified sludge biochar as an efficient adsorbent for fluoroquinolones antibiotics removal.
    Ma Y; Li P; Yang L; Wu L; He L; Gao F; Qi X; Zhang Z
    Ecotoxicol Environ Saf; 2020 Jun; 196():110550. PubMed ID: 32247244
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis of nano-scale zero-valent iron-reduced graphene oxide-silica nano-composites for the efficient removal of arsenic from aqueous solutions.
    Liu P; Liang Q; Luo H; Fang W; Geng J
    Environ Sci Pollut Res Int; 2019 Nov; 26(32):33507-33516. PubMed ID: 31529346
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In situ formation of Ca(OH)
    Zhang Q; Li J; Chen D; Xiao W; Zhao S; Ye X; Li H
    Sci Total Environ; 2023 Jan; 854():158794. PubMed ID: 36116640
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanocomposites of zero-valent iron@biochar derived from agricultural wastes for adsorptive removal of tetracyclines.
    Hao D; Chen Y; Zhang Y; You N
    Chemosphere; 2021 Dec; 284():131342. PubMed ID: 34225129
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Investigation of a modified metal-organic framework UiO-66 with nanoscale zero-valent iron for removal of uranium (VI) from aqueous solution.
    Yang F; Xie S; Wang G; Yu CW; Liu H; Liu Y
    Environ Sci Pollut Res Int; 2020 Jun; 27(16):20246-20258. PubMed ID: 32242317
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Porous biochar-nanoscale zero-valent iron composites: Synthesis, characterization and application for lead ion removal.
    Li S; Yang F; Li J; Cheng K
    Sci Total Environ; 2020 Dec; 746():141037. PubMed ID: 32745850
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis of Fe-impregnated biochar from food waste for Selenium(Ⅵ) removal from aqueous solution through adsorption: Process optimization and assessment.
    Hong SH; Lyonga FN; Kang JK; Seo EJ; Lee CG; Jeong S; Hong SG; Park SJ
    Chemosphere; 2020 Aug; 252():126475. PubMed ID: 32200180
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficient removal of pefloxacin from aqueous solution by acid-alkali modified sludge-based biochar: adsorption kinetics, isotherm, thermodynamics, and mechanism.
    Huang H; Zheng Y; Wei D; Yang G; Peng X; Fan L; Luo L; Zhou Y
    Environ Sci Pollut Res Int; 2022 Jun; 29(28):43201-43211. PubMed ID: 35091955
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biochar produced from the co-pyrolysis of sewage sludge and walnut shell for ammonium and phosphate adsorption from water.
    Yin Q; Liu M; Ren H
    J Environ Manage; 2019 Nov; 249():109410. PubMed ID: 31446122
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced removal of aqueous Cr(VI) by a green synthesized nanoscale zero-valent iron supported on oak wood biochar.
    Zhang Y; Jiao X; Liu N; Lv J; Yang Y
    Chemosphere; 2020 Apr; 245():125542. PubMed ID: 31855758
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Remediation of Cu(II) and its adsorption mechanism in aqueous system by novel magnetic biochar derived from co-pyrolysis of sewage sludge and biomass.
    Zhao B; Xu X; Zhang R; Cui M
    Environ Sci Pollut Res Int; 2021 Apr; 28(13):16408-16419. PubMed ID: 33387322
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adsorption performance and mechanism of iron-loaded biochar to methyl orange in the presence of Cr
    Cheng H; Liu Y; Li X
    J Hazard Mater; 2021 Aug; 415():125749. PubMed ID: 34088204
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Removal of tetracycline in aqueous solution by iron-loaded biochar derived from polymeric ferric sulfate and bagasse.
    Liu Q; Cao X; Yue T; Zhang F; Bai S; Liu L
    Environ Sci Pollut Res Int; 2023 Aug; 30(37):87185-87198. PubMed ID: 37418186
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An iron-biochar composite from co-pyrolysis of incinerated sewage sludge ash and peanut shell for arsenic removal: Role of silica.
    Wang Q; Li JS; Poon CS
    Environ Pollut; 2022 Nov; 313():120115. PubMed ID: 36122654
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.