These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 33770756)
1. Evaluation of smartphone-integrated magnetometers in detection of safe electromagnetic devices for use near programmable shunt valves: a proof-of-concept study. Patel SK; Zamorano-Fernández J; McCoy C; Skoch J J Neurosurg Pediatr; 2021 Jun; 27(6):629-636. PubMed ID: 33770756 [TBL] [Abstract][Full Text] [Related]
2. Smartphones and Programmable Shunts: Are These Indispensable Phones Safe and Smart? Ozturk S; Cakin H; Kurtuldu H; Kocak O; Erol FS; Kaplan M World Neurosurg; 2017 Jun; 102():518-525. PubMed ID: 28342922 [TBL] [Abstract][Full Text] [Related]
3. Programmable shunts and headphones: Are they safe together? Spader HS; Ratanaprasatporn L; Morrison JF; Grossberg JA; Cosgrove GR J Neurosurg Pediatr; 2015 Oct; 16(4):402-5. PubMed ID: 26149436 [TBL] [Abstract][Full Text] [Related]
4. Programmable shunt valves: in vitro assessment of safety of the magnetic field generated by a portable game machine. Nakashima K; Nakajo T; Kawamo M; Kato A; Ishigaki S; Murakami H; Imaizumi Y; Izumiyama H Neurol Med Chir (Tokyo); 2011; 51(9):635-8. PubMed ID: 21946726 [TBL] [Abstract][Full Text] [Related]
13. Effect of cell phone magnetic fields on adjustable cerebrospinal fluid shunt valves. Nomura S; Fujisawa H; Suzuki M Surg Neurol; 2005 May; 63(5):467-8. PubMed ID: 15883076 [TBL] [Abstract][Full Text] [Related]
14. A randomized, controlled study of a programmable shunt valve versus a conventional valve for patients with hydrocephalus. Hakim-Medos Investigator Group. Pollack IF; Albright AL; Adelson PD Neurosurgery; 1999 Dec; 45(6):1399-408; discussion 1408-11. PubMed ID: 10598708 [TBL] [Abstract][Full Text] [Related]
15. Effect of 3-tesla magnetic resonance imaging on various pressure programmable shunt valves. Inoue T; Kuzu Y; Ogasawara K; Ogawa A J Neurosurg; 2005 Aug; 103(2 Suppl):163-5. PubMed ID: 16370283 [TBL] [Abstract][Full Text] [Related]
16. An In Vitro Study of Magnetic Field Interference with an Electronic Shunt Programmer. Pajer HB; Carlson AP; Botros JA; Spader HS World Neurosurg; 2022 Oct; 166():e568-e571. PubMed ID: 35868507 [TBL] [Abstract][Full Text] [Related]
17. Overdrainage and shunt technology. A critical comparison of programmable, hydrostatic and variable-resistance valves and flow-reducing devices. Aschoff A; Kremer P; Benesch C; Fruh K; Klank A; Kunze S Childs Nerv Syst; 1995 Apr; 11(4):193-202. PubMed ID: 7621479 [TBL] [Abstract][Full Text] [Related]
18. Transcutaneous pressure-adjustable valves and magnetic resonance imaging: an ex vivo examination of the Codman-Medos programmable valve and the Sophy adjustable pressure valve. Ortler M; Kostron H; Felber S Neurosurgery; 1997 May; 40(5):1050-7; discussion 1057-8. PubMed ID: 9149264 [TBL] [Abstract][Full Text] [Related]
19. Shunt Devices for the Treatment of Adult Hydrocephalus: Recent Progress and Characteristics. Miyake H Neurol Med Chir (Tokyo); 2016 May; 56(5):274-83. PubMed ID: 27041631 [TBL] [Abstract][Full Text] [Related]
20. The programmable adult Codman Hakim valve is useful even in very small children with hydrocephalus. A 7-year retrospective study with special focus on cost/benefit analysis. Arnell K; Eriksson E; Olsen L Eur J Pediatr Surg; 2006 Feb; 16(1):1-7. PubMed ID: 16544218 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]