These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
9. Long-Term Implantable, Flexible, and Transparent Neural Interface Based on Ag/Au Core-Shell Nanowires. Araki T; Yoshida F; Uemura T; Noda Y; Yoshimoto S; Kaiju T; Suzuki T; Hamanaka H; Baba K; Hayakawa H; Yabumoto T; Mochizuki H; Kobayashi S; Tanaka M; Hirata M; Sekitani T Adv Healthc Mater; 2019 May; 8(10):e1900130. PubMed ID: 30946540 [TBL] [Abstract][Full Text] [Related]
10. Strategies for optical control and simultaneous electrical readout of extended cortical circuits. Ledochowitsch P; Yazdan-Shahmorad A; Bouchard KE; Diaz-Botia C; Hanson TL; He JW; Seybold BA; Olivero E; Phillips EA; Blanche TJ; Schreiner CE; Hasenstaub A; Chang EF; Sabes PN; Maharbiz MM J Neurosci Methods; 2015 Dec; 256():220-31. PubMed ID: 26296286 [TBL] [Abstract][Full Text] [Related]
11. A Modular Implant System for Multimodal Recording and Manipulation of the Primate Brain. Kleinbart JE; Orsborn AL; Choi JS; Wang C; Qiao S; Viventi J; Pesaran B Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3362-3365. PubMed ID: 30441108 [TBL] [Abstract][Full Text] [Related]
12. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping. Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131 [TBL] [Abstract][Full Text] [Related]
13. Stretchable Transparent Electrode Arrays for Simultaneous Electrical and Optical Interrogation of Neural Circuits in Vivo. Zhang J; Liu X; Xu W; Luo W; Li M; Chu F; Xu L; Cao A; Guan J; Tang S; Duan X Nano Lett; 2018 May; 18(5):2903-2911. PubMed ID: 29608857 [TBL] [Abstract][Full Text] [Related]
14. Novel techniques for large-scale manipulations of cortical networks in non-human primates. Yazdan-Shahmorad A; Silversmith DB; Sabes PN Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5479-5482. PubMed ID: 30441577 [TBL] [Abstract][Full Text] [Related]
15. Multifunctional optrode for opsin delivery, optical stimulation, and electrophysiological recordings in freely moving rats. Sharma K; Jäckel Z; Schneider A; Paul O; Diester I; Ruther P J Neural Eng; 2021 Nov; 18(6):. PubMed ID: 34795066 [No Abstract] [Full Text] [Related]
16. A Chronically Implantable Bidirectional Neural Interface for Non-human Primates. Komatsu M; Sugano E; Tomita H; Fujii N Front Neurosci; 2017; 11():514. PubMed ID: 28966573 [TBL] [Abstract][Full Text] [Related]
17. Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications. Park DW; Schendel AA; Mikael S; Brodnick SK; Richner TJ; Ness JP; Hayat MR; Atry F; Frye ST; Pashaie R; Thongpang S; Ma Z; Williams JC Nat Commun; 2014 Oct; 5():5258. PubMed ID: 25327513 [TBL] [Abstract][Full Text] [Related]
18. Fabrication and utility of a transparent graphene neural electrode array for electrophysiology, in vivo imaging, and optogenetics. Park DW; Brodnick SK; Ness JP; Atry F; Krugner-Higby L; Sandberg A; Mikael S; Richner TJ; Novello J; Kim H; Baek DH; Bong J; Frye ST; Thongpang S; Swanson KI; Lake W; Pashaie R; Williams JC; Ma Z Nat Protoc; 2016 Nov; 11(11):2201-2222. PubMed ID: 27735935 [TBL] [Abstract][Full Text] [Related]
19. A drivable optrode for use in chronic electrophysiology and optogenetic experiments. Stocke SK; Samuelsen CL J Neurosci Methods; 2021 Jan; 348():108979. PubMed ID: 33096153 [TBL] [Abstract][Full Text] [Related]