These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 33770944)

  • 41. Monochromatic ocular wavefront aberrations in the awake-behaving cat.
    Huxlin KR; Yoon G; Nagy L; Porter J; Williams D
    Vision Res; 2004; 44(18):2159-69. PubMed ID: 15183683
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Extended Nijboer-Zernike approach to aberration and birefringence retrieval in a high-numerical-aperture optical system.
    Braat JJ; Dirksen P; Janssen AJ; van Haver S; van de Nes AS
    J Opt Soc Am A Opt Image Sci Vis; 2005 Dec; 22(12):2635-50. PubMed ID: 16396023
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Zernike monomials in wide field of view optical designs.
    Johnson TP; Sasian J
    Appl Opt; 2020 Aug; 59(22):G146-G153. PubMed ID: 32749327
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Wavefront propagation from one plane to another with the use of Zernike polynomials and Taylor monomials.
    Dai GM; Campbell CE; Chen L; Zhao H; Chernyak D
    Appl Opt; 2009 Jan; 48(3):477-88. PubMed ID: 19151816
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Feature-based phase retrieval wavefront sensing approach using machine learning.
    Ju G; Qi X; Ma H; Yan C
    Opt Express; 2018 Nov; 26(24):31767-31783. PubMed ID: 30650757
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Direct retrieval of Zernike-based pupil functions using integrated diffractive deep neural networks.
    Goi E; Schoenhardt S; Gu M
    Nat Commun; 2022 Dec; 13(1):7531. PubMed ID: 36476752
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Zonal wavefront sensor with reduced number of rows in the detector array.
    Boruah BR; Das A
    Appl Opt; 2011 Jul; 50(20):3598-603. PubMed ID: 21743571
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Maximizing atmospheric-disturbed fiber coupling efficiency with speckle-based phase retrieval and a single-pixel camera.
    Pashazanoosi M; Taylor M; Pitts O; Flueraru C; Orth A; Hranilovic S
    Appl Opt; 2023 Aug; 62(23):G43-G52. PubMed ID: 37707062
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Deep learning estimation of modified Zernike coefficients and recovery of point spread functions in turbulence.
    Siddik AB; Sandoval S; Voelz D; Boucheron LE; Varela L
    Opt Express; 2023 Jul; 31(14):22903-22913. PubMed ID: 37475389
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Closed-loop adaptive optics using a spatial light modulator for sensing and compensating of optical aberrations in ophthalmic applications.
    Akondi V; Jewel MA; Vohnsen B
    J Biomed Opt; 2014 Sep; 19(9):96014. PubMed ID: 25253296
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low-field MR images.
    Tong N; Gou S; Yang S; Cao M; Sheng K
    Med Phys; 2019 Jun; 46(6):2669-2682. PubMed ID: 31002188
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Establishing a reference focal plane using convolutional neural networks and beads for brightfield imaging.
    Chalfoun J; Lund SP; Ling C; Peskin A; Pierce L; Halter M; Elliott J; Sarkar S
    Sci Rep; 2024 Apr; 14(1):7768. PubMed ID: 38565548
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Statistical behavior of joint least-square estimation in the phase diversity context.
    Idier J; Mugnier L; Blanc A
    IEEE Trans Image Process; 2005 Dec; 14(12):2107-16. PubMed ID: 16370463
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Quantitative comparison of different-shaped wavefront sensors and preliminary results for defocus aberrations on a mechanical eye.
    Carvalho LA; Chamon W; Schor P; Castro JC
    Arq Bras Oftalmol; 2006; 69(2):239-47. PubMed ID: 16699677
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An Efficient Correction Algorithm for Eliminating Image Misalignment Effects on Co-Phasing Measurement Accuracy for Segmented Active Optics Systems.
    Yue D; Xu S; Nie H; Wang Z
    PLoS One; 2016; 11(3):e0148872. PubMed ID: 26934045
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Combined hardware and computational optical wavefront correction.
    South FA; Kurokawa K; Liu Z; Liu YZ; Miller DT; Boppart SA
    Biomed Opt Express; 2018 Jun; 9(6):2562-2574. PubMed ID: 30258673
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Neural networks for image-based wavefront sensing for astronomy.
    Andersen T; Owner-Petersen M; Enmark A
    Opt Lett; 2019 Sep; 44(18):4618-4621. PubMed ID: 31517947
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sampling moirĂ© method: a tool for sensing quadratic phase distortion and its correction for accurate quantitative phase microscopy.
    Jayakumar N; Ahmad A; Mehta DS; Ahluwalia BS
    Opt Express; 2020 Mar; 28(7):10062-10077. PubMed ID: 32225600
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Single-shot higher-order transport-of-intensity quantitative phase imaging using deep learning.
    Yoneda N; Kakei S; Komuro K; Onishi A; Saita Y; Nomura T
    Appl Opt; 2021 Oct; 60(28):8802-8808. PubMed ID: 34613106
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Systematic comparison of the use of annular and Zernike circle polynomials for annular wavefronts.
    Mahajan VN; Aftab M
    Appl Opt; 2010 Nov; 49(33):6489-501. PubMed ID: 21102675
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.