These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 33770957)

  • 1. 3D shape measurement in the presence of strong interreflections by using single-pixel imaging in a camera-projector system.
    Jiang H; Yang Q; Li X; Zhao H; Li Y; Xu Y
    Opt Express; 2021 Feb; 29(3):3609-3620. PubMed ID: 33770957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D shape measurement in the presence of strong interreflections by epipolar imaging and regional fringe projection.
    Zhao H; Xu Y; Jiang H; Li X
    Opt Express; 2018 Mar; 26(6):7117-7131. PubMed ID: 29609398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D shape measurement of translucent objects based on Fourier single-pixel imaging in projector-camera system.
    Jiang H; Zhai H; Xu Y; Li X; Zhao H
    Opt Express; 2019 Nov; 27(23):33564-33574. PubMed ID: 31878422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Separation of interreflections based on parallel single-pixel imaging.
    Jiang H; Yan Y; Li X; Zhao H; Li Y; Xu Y
    Opt Express; 2021 Aug; 29(16):26150-26164. PubMed ID: 34614927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of projector pixel shape on ultrahigh-resolution 3D shape measurement.
    Hyun JS; Zhang S
    Opt Express; 2020 Mar; 28(7):9510-9520. PubMed ID: 32225557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calibration method for projector-camera-based telecentric fringe projection profilometry system.
    Liu H; Lin H; Yao L
    Opt Express; 2017 Dec; 25(25):31492-31508. PubMed ID: 29245824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase Target-Based Calibration of Projector Radial Chromatic Aberration for Color Fringe 3D Measurement Systems.
    Zhang Y; Sun Y; Gao N; Meng Z; Zhang Z
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scene-adaptive pattern coding-based fringe projection profilometry: diffuse surfaces identification and 3-D reconstruction in cluttered scenes.
    Zhao Y; Yu H; Zheng Y; Zhang Y; Zheng D; Han J
    Opt Express; 2023 Sep; 31(20):32565-32581. PubMed ID: 37859057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiview fringe matching profilometry in a projector-camera system.
    Guo X; Zhao H; Jia P; Li K
    Opt Lett; 2018 Aug; 43(15):3618-3621. PubMed ID: 30067638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-shot 3D shape measurement of discontinuous objects based on a coaxial fringe projection system.
    Wang Z; Zhang Z; Gao N; Xiao Y; Gao F; Jiang X
    Appl Opt; 2019 Feb; 58(5):A169-A178. PubMed ID: 30873975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-Dimensional Shape and Deformation Measurements Based on Fringe Projection Profilometry and Fluorescent Digital Image Correlation via a 3 Charge Coupled Device Camera.
    Sun W; Xu Z; Li X; Chen Z; Tang X
    Sensors (Basel); 2023 Jul; 23(15):. PubMed ID: 37571447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient depth recovering method free from projector errors by use of pixel cross-ratio invariance in fringe projection profilometry.
    Zhu H; Xing S; Guo H
    Appl Opt; 2020 Feb; 59(4):1145-1155. PubMed ID: 32225254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance analysis of 3-D shape measurement algorithm with a short baseline projector-camera system.
    Liu J; Li Y
    Robotics Biomim; 2014; 1(1):1. PubMed ID: 26613074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compressive parallel single-pixel imaging for efficient 3D shape measurement in the presence of strong interreflections by using a sampling Fourier strategy.
    Li Y; Jiang H; Zhao H; Li X; Wang Y; Xu Y
    Opt Express; 2021 Aug; 29(16):25032-25047. PubMed ID: 34614844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Programmable Non-Epipolar Indirect Light Transport: Capture and Analysis.
    Kubo H; Jayasuriya S; Iwaguchi T; Funatomi T; Mukaigawa Y; Narasimhan SG
    IEEE Trans Vis Comput Graph; 2021 Apr; 27(4):2421-2436. PubMed ID: 31634839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-registration shape measurement based on fringe projection and structure from motion.
    Wang P; Zhang L
    Appl Opt; 2020 Dec; 59(35):10986-10994. PubMed ID: 33361923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-shot absolute 3D shape measurement with deep-learning-based color fringe projection profilometry.
    Qian J; Feng S; Li Y; Tao T; Han J; Chen Q; Zuo C
    Opt Lett; 2020 Apr; 45(7):1842-1845. PubMed ID: 32236013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive digital fringe projection technique for high dynamic range three-dimensional shape measurement.
    Lin H; Gao J; Mei Q; He Y; Liu J; Wang X
    Opt Express; 2016 Apr; 24(7):7703-18. PubMed ID: 27137056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional shape and deformation measurement on complex structure parts.
    Wu Z; Guo W; Chen Z; Wang H; Li X; Zhang Q
    Sci Rep; 2022 May; 12(1):7760. PubMed ID: 35545639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate calibration for fringe projection profilometry based on an improved subpixel mapping with local gray distribution.
    Liu B; He X; Wang C; Wang S; Wu G
    J Opt Soc Am A Opt Image Sci Vis; 2023 Dec; 40(12):2164-2176. PubMed ID: 38086025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.