These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 33771253)

  • 1. The VKORC1 ER-luminal loop mutation (Leu76Pro) leads to a significant resistance to warfarin in black rats (Rattus rattus).
    Takeda K; Ikenaka Y; Fourches D; Tanaka KD; Nakayama SMM; Triki D; Li X; Igarashi M; Tanikawa T; Ishizuka M
    Pestic Biochem Physiol; 2021 Mar; 173():104774. PubMed ID: 33771253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of hepatic warfarin metabolism activity in rodenticide-resistant black rats (Rattus rattus) in Tokyo by in situ liver perfusion.
    Takeda K; Ikenaka Y; Tanaka KD; Nakayama SMM; Tanikawa T; Mizukawa H; Ishizuka M
    Pestic Biochem Physiol; 2018 Jun; 148():42-49. PubMed ID: 29891376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human VKORC1 mutations cause variable degrees of 4-hydroxycoumarin resistance and affect putative warfarin binding interfaces.
    Czogalla KJ; Biswas A; Wendeln AC; Westhofen P; Müller CR; Watzka M; Oldenburg J
    Blood; 2013 Oct; 122(15):2743-50. PubMed ID: 23982176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Warfarin resistance in a French strain of rats.
    Lasseur R; Longin-Sauvageon C; Videmann B; Billeret M; Berny P; Benoit E
    J Biochem Mol Toxicol; 2005; 19(6):379-85. PubMed ID: 16421894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel mutation in VKORC1 and its effect on enzymatic activity in Japanese warfarin-resistant rats.
    Tanaka KD; Kawai YK; Ikenaka Y; Harunari T; Tanikawa T; Fujita S; Ishizuka M
    J Vet Med Sci; 2013 Feb; 75(2):135-9. PubMed ID: 23018795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel revelation of warfarin resistant mechanism in roof rats (Rattus rattus) using pharmacokinetic/pharmacodynamic analysis.
    Takeda K; Ikenaka Y; Tanikawa T; Tanaka KD; Nakayama SM; Mizukawa H; Ishizuka M
    Pestic Biochem Physiol; 2016 Nov; 134():1-7. PubMed ID: 27914534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Avian interspecific differences in VKOR activity and inhibition: Insights from amino acid sequence and mRNA expression ratio of VKORC1 and VKORC1L1.
    Nakayama SMM; Morita A; Ikenaka Y; Kawai YK; Watanabe KP; Ishii C; Mizukawa H; Yohannes YB; Saito K; Watanabe Y; Ito M; Ohsawa N; Ishizuka M
    Comp Biochem Physiol C Toxicol Pharmacol; 2020 Feb; 228():108635. PubMed ID: 31639498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new cell culture-based assay quantifies vitamin K 2,3-epoxide reductase complex subunit 1 function and reveals warfarin resistance phenotypes not shown by the dithiothreitol-driven VKOR assay.
    Fregin A; Czogalla KJ; Gansler J; Rost S; Taverna M; Watzka M; Bevans CG; Müller CR; Oldenburg J
    J Thromb Haemost; 2013 May; 11(5):872-80. PubMed ID: 23452238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Warfarin resistance is associated with a protein component of the vitamin K 2,3-epoxide reductase enzyme complex in rat liver.
    Cain D; Hutson SM; Wallin R
    Thromb Haemost; 1998 Jul; 80(1):128-33. PubMed ID: 9684798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of warfarin resistance using transcription activator-like effector nucleases-mediated vitamin K epoxide reductase knockout HEK293 cells.
    Tie JK; Jin DY; Tie K; Stafford DW
    J Thromb Haemost; 2013 Aug; 11(8):1556-64. PubMed ID: 23710884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stabilization of warfarin-binding pocket of VKORC1 and VKORL1 by a peripheral region determines their different sensitivity to warfarin inhibition.
    Shen G; Li S; Cui W; Liu S; Liu Q; Yang Y; Gross M; Li W
    J Thromb Haemost; 2018 Jun; 16(6):1164-1175. PubMed ID: 29665197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pesticide resistance in wild mammals--mechanisms of anticoagulant resistance in wild rodents.
    Ishizuka M; Tanikawa T; Tanaka KD; Heewon M; Okajima F; Sakamoto KQ; Fujita S
    J Toxicol Sci; 2008 Aug; 33(3):283-91. PubMed ID: 18670159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Warfarin and vitamin K epoxide reductase: a molecular accounting for observed inhibition.
    Wu S; Chen X; Jin DY; Stafford DW; Pedersen LG; Tie JK
    Blood; 2018 Aug; 132(6):647-657. PubMed ID: 29743176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Warfarin and vitamin K compete for binding to Phe55 in human VKOR.
    Czogalla KJ; Biswas A; Höning K; Hornung V; Liphardt K; Watzka M; Oldenburg J
    Nat Struct Mol Biol; 2017 Jan; 24(1):77-85. PubMed ID: 27941861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of oral anticoagulants with vitamin K epoxide reductase in its native milieu.
    Chen X; Jin DY; Stafford DW; Tie JK
    Blood; 2018 Nov; 132(18):1974-1984. PubMed ID: 30089628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Confirmation of warfarin resistance of naturally occurring VKORC1 variants by coexpression with coagulation factor IX and in silico protein modelling.
    Müller E; Keller A; Fregin A; Müller CR; Rost S
    BMC Genet; 2014 Feb; 15():17. PubMed ID: 24491178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2.
    Rost S; Fregin A; Ivaskevicius V; Conzelmann E; Hörtnagel K; Pelz HJ; Lappegard K; Seifried E; Scharrer I; Tuddenham EG; Müller CR; Strom TM; Oldenburg J
    Nature; 2004 Feb; 427(6974):537-41. PubMed ID: 14765194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. VKORC1 and VKORC1L1 have distinctly different oral anticoagulant dose-response characteristics and binding sites.
    Czogalla KJ; Liphardt K; Höning K; Hornung V; Biswas A; Watzka M; Oldenburg J
    Blood Adv; 2018 Mar; 2(6):691-702. PubMed ID: 29581108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The screening for anticoagulant rodenticide gene VKORC1 polymorphism in the rat Rattus norvegicus, Rattus tanezumi and Rattus losea in Hong Kong.
    Huang EYY; Law STS; Nong W; Yip HY; Uea-Anuwong T; Magouras I; Hui JHL
    Sci Rep; 2022 Jul; 12(1):12545. PubMed ID: 35869096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The genetic basis of resistance to anticoagulants in rodents.
    Pelz HJ; Rost S; Hünerberg M; Fregin A; Heiberg AC; Baert K; MacNicoll AD; Prescott CV; Walker AS; Oldenburg J; Müller CR
    Genetics; 2005 Aug; 170(4):1839-47. PubMed ID: 15879509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.