These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 33771864)
1. Atomic-layer-confined multiple quantum wells enabled by monolithic bandgap engineering of transition metal dichalcogenides. Kim YS; Kang S; So JP; Kim JC; Kim K; Yang S; Jung Y; Shin Y; Lee S; Lee D; Park JW; Cheong H; Jeong HY; Park HG; Lee GH; Lee CH Sci Adv; 2021 Mar; 7(13):. PubMed ID: 33771864 [TBL] [Abstract][Full Text] [Related]
4. Enhanced Photoluminescence of Multiple Two-Dimensional van der Waals Heterostructures Fabricated by Layer-by-Layer Oxidation of MoS Kang S; Kim YS; Jeong JH; Kwon J; Kim JH; Jung Y; Kim JC; Kim B; Bae SH; Huang PY; Hone JC; Jeong HY; Park JW; Lee CH; Lee GH ACS Appl Mater Interfaces; 2021 Jan; 13(1):1245-1252. PubMed ID: 33356110 [TBL] [Abstract][Full Text] [Related]
6. Monolithic Interface Contact Engineering to Boost Optoelectronic Performances of 2D Semiconductor Photovoltaic Heterojunctions. Yang S; Cha J; Kim JC; Lee D; Huh W; Kim Y; Lee SW; Park HG; Jeong HY; Hong S; Lee GH; Lee CH Nano Lett; 2020 Apr; 20(4):2443-2451. PubMed ID: 32191480 [TBL] [Abstract][Full Text] [Related]
7. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Withers F; Del Pozo-Zamudio O; Mishchenko A; Rooney AP; Gholinia A; Watanabe K; Taniguchi T; Haigh SJ; Geim AK; Tartakovskii AI; Novoselov KS Nat Mater; 2015 Mar; 14(3):301-6. PubMed ID: 25643033 [TBL] [Abstract][Full Text] [Related]
8. Interlayer Excitons in Transition Metal Dichalcogenide Semiconductors for 2D Optoelectronics. Liu Y; Elbanna A; Gao W; Pan J; Shen Z; Teng J Adv Mater; 2022 Jun; 34(25):e2107138. PubMed ID: 34700359 [TBL] [Abstract][Full Text] [Related]
9. Giant Photoluminescence Enhancement and Resonant Charge Transfer in Atomically Thin Two-Dimensional Cr Rahman S; Liu B; Wang B; Tang Y; Lu Y ACS Appl Mater Interfaces; 2021 Feb; 13(6):7423-7433. PubMed ID: 33535756 [TBL] [Abstract][Full Text] [Related]
10. Interlayer Exciton Optoelectronics in a 2D Heterostructure p-n Junction. Ross JS; Rivera P; Schaibley J; Lee-Wong E; Yu H; Taniguchi T; Watanabe K; Yan J; Mandrus D; Cobden D; Yao W; Xu X Nano Lett; 2017 Feb; 17(2):638-643. PubMed ID: 28006106 [TBL] [Abstract][Full Text] [Related]
11. Engineering Band-Type Alignment in CsPbBr Lee KJ; Merdad NA; Maity P; El-Demellawi JK; Lui Z; Sinatra L; Zhumekenov AA; Hedhili MN; Min JW; Min JH; Gutiérrez-Arzaluz L; Anjum DH; Wei N; Ooi BS; Alshareef HN; Mohammed OF; Bakr OM Adv Mater; 2021 Apr; 33(17):e2005166. PubMed ID: 33759267 [TBL] [Abstract][Full Text] [Related]
12. Light-trapping for room temperature Bose-Einstein condensation in InGaAs quantum wells. Vasudev P; Jiang JH; John S Opt Express; 2016 Jun; 24(13):14010-35. PubMed ID: 27410564 [TBL] [Abstract][Full Text] [Related]
14. Interfacially Bound Exciton State in a Hybrid Structure of Monolayer WS Cheng G; Li B; Zhao C; Yan X; Wang H; Lau KM; Wang J Nano Lett; 2018 Sep; 18(9):5640-5645. PubMed ID: 30139259 [TBL] [Abstract][Full Text] [Related]
15. Engineering Exciton Recombination Pathways in Bilayer WSe Uddin SZ; Higashitarumizu N; Kim H; Rabani E; Javey A ACS Nano; 2022 Jan; 16(1):1339-1345. PubMed ID: 35014783 [TBL] [Abstract][Full Text] [Related]
16. Strain-induced indirect to direct bandgap transition in multilayer WSe2. Desai SB; Seol G; Kang JS; Fang H; Battaglia C; Kapadia R; Ager JW; Guo J; Javey A Nano Lett; 2014 Aug; 14(8):4592-7. PubMed ID: 24988370 [TBL] [Abstract][Full Text] [Related]
17. Linear and nonlinear optical probing of various excitons in 2D inorganic-organic hybrid structures. Adnan M; Baumberg JJ; Vijaya Prakash G Sci Rep; 2020 Feb; 10(1):2615. PubMed ID: 32054972 [TBL] [Abstract][Full Text] [Related]