These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 3377191)

  • 21. Distribution of thyrotropin-releasing hormone (TRH) immunoreactivity in the brain of the zebrafish (Danio rerio).
    Díaz ML; Becerra M; Manso MJ; Anadón R
    J Comp Neurol; 2002 Aug; 450(1):45-60. PubMed ID: 12124766
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Distribution of somatostatin immunoreactivity in the brain of the snake Bothrops jararaca.
    Alponti RF; Breno MC; Mancera JM; Martin-Del-Rio MP; Silveira PF
    Gen Comp Endocrinol; 2006 Feb; 145(3):270-9. PubMed ID: 16288754
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The isthmic neuroepithelium is essential for cerebellar midline fusion.
    Louvi A; Alexandre P; Métin C; Wurst W; Wassef M
    Development; 2003 Nov; 130(22):5319-30. PubMed ID: 14507778
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The development of the human brain and the closure of the rostral neuropore at stage 11.
    Müller F; O'Rahilly R
    Anat Embryol (Berl); 1986; 175(2):205-22. PubMed ID: 3826651
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Embryonal development of the brain of the shark Scyliorhinus canicula (L.). I. Formation of the shape of the brain, the migration mode and phase and the structure of the diencephalon].
    Farner HP
    J Hirnforsch; 1978; 19(4):313-32. PubMed ID: 739140
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Distribution of galanin-like immunoreactivity in the brain of Rana esculenta and Xenopus laevis.
    Lázár GY; Liposits ZS; Tóth P; Trasti SL; Maderdrut JL; Merchenthaler I
    J Comp Neurol; 1991 Aug; 310(1):45-67. PubMed ID: 1719037
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A comparison of the distribution of central cholinergic neurons as demonstrated by acetylcholinesterase pharmacohistochemistry and choline acetyltransferase immunohistochemistry.
    Satoh K; Armstrong DM; Fibiger HC
    Brain Res Bull; 1983 Dec; 11(6):693-720. PubMed ID: 6362780
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Afferent and efferent connections of the medial preoptic area in the rat: a WGA-HRP study.
    Chiba T; Murata Y
    Brain Res Bull; 1985 Mar; 14(3):261-72. PubMed ID: 3995367
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The adult central nervous cholinergic system of a neurogenetic model animal, the zebrafish Danio rerio.
    Mueller T; Vernier P; Wullimann MF
    Brain Res; 2004 Jun; 1011(2):156-69. PubMed ID: 15157802
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Autoradiographic distribution of 125I calcitonin gene-related peptide binding sites in the rat central nervous system.
    Skofitsch G; Jacobowitz DM
    Peptides; 1985; 6(5):975-86. PubMed ID: 3001670
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ascending projections of the brain stem reticular formation in a nonmammalian vertebrate (the lizard Varanus exanthematicus), with notes on the afferent connections of the forebrain.
    Ten Donkelaar HJ; De Boer-Van Huizen R
    J Comp Neurol; 1981 Aug; 200(4):501-28. PubMed ID: 7263959
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hypothalamic and extrahypothalamic sauvagine-like immunoreactivity in the bullfrog (Rana catesbeiana) central nervous system.
    Gonzalez GC; Bountzioukas S; Gonzalez ES; McMaster D; Ko D; Lederis K; Lukowiak K
    J Comp Neurol; 1996 Feb; 365(2):256-67. PubMed ID: 8822168
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The longitudinal growth of the neuromeres and the resulting brain in the human embryo.
    O'Rahilly R; Müller F
    Cells Tissues Organs; 2013; 197(3):178-95. PubMed ID: 23183269
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ventricular system and choroid plexuses of the human brain during the embryonic period proper.
    O'Rahilly R; Müller F
    Am J Anat; 1990 Dec; 189(4):285-302. PubMed ID: 2285038
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Distribution of dopamine immunoreactivity in the brain of the mormyrid teleost Gnathonemus petersii.
    Meek J; Joosten HW; Steinbusch HW
    J Comp Neurol; 1989 Mar; 281(3):362-83. PubMed ID: 2703553
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Immunohistochemical localization of ryanodine binding proteins in the central nervous system of gymnotiform fish.
    Zupanc GK; Airey JA; Maler L; Sutko JL; Ellisman MH
    J Comp Neurol; 1992 Nov; 325(2):135-51. PubMed ID: 1460110
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Conserved and divergent patterns of Reelin expression in the zebrafish central nervous system.
    Costagli A; Kapsimali M; Wilson SW; Mione M
    J Comp Neurol; 2002 Aug; 450(1):73-93. PubMed ID: 12124768
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Volumetric development of the fetal telencephalon, cerebral cortex, diencephalon, and rhombencephalon including the cerebellum in man.
    Koop M; Rilling G; Herrmann A; Kretschmann HJ
    Bibl Anat; 1986; (28):53-78. PubMed ID: 3707512
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A SEM study on the development of the ventricular surface morphology in the diencephalon of the rat.
    Lakke EA; van der Veeken JG; Mentink MM; Marani E
    Anat Embryol (Berl); 1988; 179(1):73-80. PubMed ID: 3213957
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Olfactory relationships of the telencephalon and diencephalon in the rabbit. III. The ipsilateral centrifugal fibers to the olfactory bulbar and retrobulbar formations.
    Broadwell RD; Jacobowitz DM
    J Comp Neurol; 1976 Dec; 170(3):321-45. PubMed ID: 62770
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.