These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 33771990)
1. Formation of large low shear velocity provinces through the decomposition of oxidized mantle. Wang W; Liu J; Zhu F; Li M; Dorfman SM; Li J; Wu Z Nat Commun; 2021 Mar; 12(1):1911. PubMed ID: 33771990 [TBL] [Abstract][Full Text] [Related]
2. Evidence for a Fe Kurnosov A; Marquardt H; Frost DJ; Ballaran TB; Ziberna L Nature; 2017 Mar; 543(7646):543-546. PubMed ID: 28289289 [TBL] [Abstract][Full Text] [Related]
3. Compositional and thermal state of the lower mantle from joint 3D inversion with seismic tomography and mineral elasticity. Deng X; Xu Y; Hao S; Ruan Y; Zhao Y; Wang W; Ni S; Wu Z Proc Natl Acad Sci U S A; 2023 Jun; 120(26):e2220178120. PubMed ID: 37339202 [TBL] [Abstract][Full Text] [Related]
4. Pressure stabilizes ferrous iron in bridgmanite under hydrous deep lower mantle conditions. Zhang L; Chen Y; Yang Z; Liu L; Yang Y; Dalladay-Simpson P; Wang J; Mao HK Nat Commun; 2024 May; 15(1):4333. PubMed ID: 38773099 [TBL] [Abstract][Full Text] [Related]
5. Evidence for the charge disproportionation of iron in extraterrestrial bridgmanite. Bindi L; Shim SH; Sharp TG; Xie X Sci Adv; 2020 Jan; 6(2):eaay7893. PubMed ID: 31950086 [TBL] [Abstract][Full Text] [Related]
6. Low-spin ferric iron in primordial bridgmanite crystallized from a deep magma ocean. Okuda Y; Ohta K; Nishihara Y; Hirao N; Wakamatsu T; Suehiro S; Kawaguchi SI; Ohishi Y Sci Rep; 2021 Sep; 11(1):19471. PubMed ID: 34593901 [TBL] [Abstract][Full Text] [Related]
7. Stability of Fe,Al-bearing bridgmanite in the lower mantle and synthesis of pure Fe-bridgmanite. Ismailova L; Bykova E; Bykov M; Cerantola V; McCammon C; Boffa Ballaran T; Bobrov A; Sinmyo R; Dubrovinskaia N; Glazyrin K; Liermann HP; Kupenko I; Hanfland M; Prescher C; Prakapenka V; Svitlyk V; Dubrovinsky L Sci Adv; 2016 Jul; 2(7):e1600427. PubMed ID: 27453945 [TBL] [Abstract][Full Text] [Related]
9. Effect of cation substitution on bridgmanite elasticity: A key to interpret seismic anomalies in the lower mantle. Fukui H; Yoneda A; Nakatsuka A; Tsujino N; Kamada S; Ohtani E; Shatskiy A; Hirao N; Tsutsui S; Uchiyama H; Baron AQ Sci Rep; 2016 Sep; 6():33337. PubMed ID: 27642083 [TBL] [Abstract][Full Text] [Related]
10. Iron silicate perovskite and postperovskite in the deep lower mantle. Yang Z; Song Z; Wu Z; Mao HK; Zhang L Proc Natl Acad Sci U S A; 2024 Apr; 121(17):e2401281121. PubMed ID: 38621121 [TBL] [Abstract][Full Text] [Related]
11. Temperature dependence of nitrogen solubility in bridgmanite and evolution of nitrogen storage capacity in the lower mantle. Fukuyama K; Kagi H; Inoue T; Kakizawa S; Shinmei T; Sano Y; Deligny C; Füri E Sci Rep; 2023 Mar; 13(1):3537. PubMed ID: 36864194 [TBL] [Abstract][Full Text] [Related]
12. Stability of ferrous-iron-rich bridgmanite under reducing midmantle conditions. Shim SH; Grocholski B; Ye Y; Alp EE; Xu S; Morgan D; Meng Y; Prakapenka VB Proc Natl Acad Sci U S A; 2017 Jun; 114(25):6468-6473. PubMed ID: 28584106 [TBL] [Abstract][Full Text] [Related]
13. Calcium dissolution in bridgmanite in the Earth's deep mantle. Ko B; Greenberg E; Prakapenka V; Alp EE; Bi W; Meng Y; Zhang D; Shim SH Nature; 2022 Nov; 611(7934):88-92. PubMed ID: 36261527 [TBL] [Abstract][Full Text] [Related]
14. Natural Fe-bearing aluminous bridgmanite in the Katol L6 chondrite. Ghosh S; Tiwari K; Miyahara M; Rohrbach A; Vollmer C; Stagno V; Ohtani E; Ray D Proc Natl Acad Sci U S A; 2021 Oct; 118(40):. PubMed ID: 34588307 [TBL] [Abstract][Full Text] [Related]
15. Experimental evidence for silica-enriched Earth's lower mantle with ferrous iron dominant bridgmanite. Mashino I; Murakami M; Miyajima N; Petitgirard S Proc Natl Acad Sci U S A; 2020 Nov; 117(45):27899-27905. PubMed ID: 33093206 [TBL] [Abstract][Full Text] [Related]
16. Extensive iron-water exchange at Earth's core-mantle boundary can explain seismic anomalies. Kawano K; Nishi M; Kuwahara H; Kakizawa S; Inoue T; Kondo T Nat Commun; 2024 Oct; 15(1):8701. PubMed ID: 39406711 [TBL] [Abstract][Full Text] [Related]
17. Efficacy of the post-perovskite phase as an explanation for lowermost-mantle seismic properties. Wookey J; Stackhouse S; Kendall JM; Brodholt J; Price GD Nature; 2005 Dec; 438(7070):1004-7. PubMed ID: 16355222 [TBL] [Abstract][Full Text] [Related]
18. Mineralogy of the deep lower mantle in the presence of H Hu Q; Liu J; Chen J; Yan B; Meng Y; Prakapenka VB; Mao WL; Mao HK Natl Sci Rev; 2021 Apr; 8(4):nwaa098. PubMed ID: 34691606 [TBL] [Abstract][Full Text] [Related]
19. Fate of MgSiO3 melts at core-mantle boundary conditions. Petitgirard S; Malfait WJ; Sinmyo R; Kupenko I; Hennet L; Harries D; Dane T; Burghammer M; Rubie DC Proc Natl Acad Sci U S A; 2015 Nov; 112(46):14186-90. PubMed ID: 26578761 [TBL] [Abstract][Full Text] [Related]
20. Effects of iron on the lattice thermal conductivity of Earth's deep mantle and implications for mantle dynamics. Hsieh WP; Deschamps F; Okuchi T; Lin JF Proc Natl Acad Sci U S A; 2018 Apr; 115(16):4099-4104. PubMed ID: 29610319 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]