These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 33772579)

  • 1. Structural parameters of palindromic repeats determine the specificity of nuclease attack of secondary structures.
    Ait Saada A; Costa AB; Sheng Z; Guo W; Haber JE; Lobachev KS
    Nucleic Acids Res; 2021 Apr; 49(7):3932-3947. PubMed ID: 33772579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromosome aberrations resulting from double-strand DNA breaks at a naturally occurring yeast fragile site composed of inverted ty elements are independent of Mre11p and Sae2p.
    Casper AM; Greenwell PW; Tang W; Petes TD
    Genetics; 2009 Oct; 183(2):423-39, 1SI-26SI. PubMed ID: 19635935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide screen reveals replication pathway for quasi-palindrome fragility dependent on homologous recombination.
    Zhang Y; Saini N; Sheng Z; Lobachev KS
    PLoS Genet; 2013; 9(12):e1003979. PubMed ID: 24339793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mre11-Sae2 and RPA Collaborate to Prevent Palindromic Gene Amplification.
    Deng SK; Yin Y; Petes TD; Symington LS
    Mol Cell; 2015 Nov; 60(3):500-8. PubMed ID: 26545079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Double-strand break repair pathways protect against CAG/CTG repeat expansions, contractions and repeat-mediated chromosomal fragility in Saccharomyces cerevisiae.
    Sundararajan R; Gellon L; Zunder RM; Freudenreich CH
    Genetics; 2010 Jan; 184(1):65-77. PubMed ID: 19901069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fragile DNA motifs trigger mutagenesis at distant chromosomal loci in saccharomyces cerevisiae.
    Saini N; Zhang Y; Nishida Y; Sheng Z; Choudhury S; Mieczkowski P; Lobachev KS
    PLoS Genet; 2013 Jun; 9(6):e1003551. PubMed ID: 23785298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Replication stalling at unstable inverted repeats: interplay between DNA hairpins and fork stabilizing proteins.
    Voineagu I; Narayanan V; Lobachev KS; Mirkin SM
    Proc Natl Acad Sci U S A; 2008 Jul; 105(29):9936-41. PubMed ID: 18632578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size-dependent palindrome-induced intrachromosomal recombination in yeast.
    Lisnić B; Svetec IK; Stafa A; Zgaga Z
    DNA Repair (Amst); 2009 Mar; 8(3):383-9. PubMed ID: 19124276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic and Molecular Approaches to Study Chromosomal Breakage at Secondary Structure-Forming Repeats.
    Ait Saada A; Costa AB; Lobachev KS
    Methods Mol Biol; 2021; 2153():71-86. PubMed ID: 32840773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential requirement of Srs2 helicase and Rad51 displacement activities in replication of hairpin-forming CAG/CTG repeats.
    Nguyen JHG; Viterbo D; Anand RP; Verra L; Sloan L; Richard GF; Freudenreich CH
    Nucleic Acids Res; 2017 May; 45(8):4519-4531. PubMed ID: 28175398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size-dependent antirecombinogenic effect of short spacers on palindrome recombinogenicity.
    Svetec Miklenić M; Gatalica N; Matanović A; Žunar B; Štafa A; Lisnić B; Svetec IK
    DNA Repair (Amst); 2020 Jun; 90():102848. PubMed ID: 32388488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long palindromic sequences induce double-strand breaks during meiosis in yeast.
    Nasar F; Jankowski C; Nag DK
    Mol Cell Biol; 2000 May; 20(10):3449-58. PubMed ID: 10779335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mus81-dependent double-strand DNA breaks at in vivo-generated cruciform structures in S. cerevisiae.
    Coté AG; Lewis SM
    Mol Cell; 2008 Sep; 31(6):800-12. PubMed ID: 18922464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fusion of nearby inverted repeats by a replication-based mechanism leads to formation of dicentric and acentric chromosomes that cause genome instability in budding yeast.
    Paek AL; Kaochar S; Jones H; Elezaby A; Shanks L; Weinert T
    Genes Dev; 2009 Dec; 23(24):2861-75. PubMed ID: 20008936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic Screens to Study GAA/TTC and Inverted Repeat Instability in Saccharomyces cerevisiae.
    Guo W; Lobachev KS
    Methods Mol Biol; 2020; 2056():103-112. PubMed ID: 31586343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A perfect palindrome in the Escherichia coli chromosome forms DNA hairpins on both leading- and lagging-strands.
    Azeroglu B; Lincker F; White MA; Jain D; Leach DR
    Nucleic Acids Res; 2014 Dec; 42(21):13206-13. PubMed ID: 25389268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Processing of DNA double-stranded breaks and intermediates of recombination and repair by Saccharomyces cerevisiae Mre11 and its stimulation by Rad50, Xrs2, and Sae2 proteins.
    Ghodke I; Muniyappa K
    J Biol Chem; 2013 Apr; 288(16):11273-86. PubMed ID: 23443654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Palindromes in DNA-A Risk for Genome Stability and Implications in Cancer.
    Svetec Miklenić M; Svetec IK
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33799581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cruciform DNA-binding protein Crp1 stimulates the endonuclease activity of Mus81-Mms4 in Saccharomyces cerevisiae.
    Phung HTT; Tran DH; Nguyen TX
    FEBS Lett; 2020 Dec; 594(24):4320-4337. PubMed ID: 32936932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of large palindromic DNA by homologous recombination of short inverted repeat sequences in Saccharomyces cerevisiae.
    Butler DK; Gillespie D; Steele B
    Genetics; 2002 Jul; 161(3):1065-75. PubMed ID: 12136011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.