BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 33772594)

  • 1. What defines a synthetic riboswitch? - Conformational dynamics of ciprofloxacin aptamers with similar binding affinities but varying regulatory potentials.
    Kaiser C; Schneider J; Groher F; Suess B; Wachtveitl J
    Nucleic Acids Res; 2021 Apr; 49(7):3661-3671. PubMed ID: 33772594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural Changes in Aptamers are Essential for Synthetic Riboswitch Engineering.
    Hoetzel J; Suess B
    J Mol Biol; 2022 Sep; 434(18):167631. PubMed ID: 35595164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNA Capture-SELEX on Streptavidin Magnetic Beads.
    Kraus L; Suess B
    Methods Mol Biol; 2023; 2570():63-71. PubMed ID: 36156774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Next-level riboswitch development-implementation of Capture-SELEX facilitates identification of a new synthetic riboswitch.
    Boussebayle A; Torka D; Ollivaud S; Braun J; Bofill-Bosch C; Dombrowski M; Groher F; Hamacher K; Suess B
    Nucleic Acids Res; 2019 May; 47(9):4883-4895. PubMed ID: 30957848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient Method to Identify Synthetic Riboswitches Using RNA-Based Capture-SELEX Combined with In Vivo Screening.
    Kramat J; Suess B
    Methods Mol Biol; 2022; 2518():157-177. PubMed ID: 35666445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro selection of RNA aptamers for a small-molecule dye.
    Murata A; Sato S
    Methods Mol Biol; 2014; 1111():17-28. PubMed ID: 24549609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic-scale characterization of conformational changes in the preQ₁ riboswitch aptamer upon ligand binding.
    Petrone PM; Dewhurst J; Tommasi R; Whitehead L; Pomerantz AK
    J Mol Graph Model; 2011 Sep; 30():179-85. PubMed ID: 21831681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro selection of antibiotic-binding aptamers.
    Groher F; Suess B
    Methods; 2016 Aug; 106():42-50. PubMed ID: 27223401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnesium Ion-Driven Folding and Conformational Switching Kinetics of Tetracycline Binding Aptamer: Implications for in vivo Riboswitch Engineering.
    Kaiser C; Vogel M; Appel B; Weigand J; Müller S; Suess B; Wachtveitl J
    J Mol Biol; 2023 Oct; 435(20):168253. PubMed ID: 37640152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNA aptamers as genetic control devices: the potential of riboswitches as synthetic elements for regulating gene expression.
    Berens C; Groher F; Suess B
    Biotechnol J; 2015 Feb; 10(2):246-57. PubMed ID: 25676052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of RNA aptamers with riboswitching properties.
    Schneider C; Suess B
    Methods; 2016 Mar; 97():44-50. PubMed ID: 26672481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational Methods for Modeling Aptamers and Designing Riboswitches.
    Gong S; Wang Y; Wang Z; Zhang W
    Int J Mol Sci; 2017 Nov; 18(11):. PubMed ID: 29149090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA-based Capture-SELEX for the selection of small molecule-binding aptamers.
    Boussebayle A; Groher F; Suess B
    Methods; 2019 May; 161():10-15. PubMed ID: 30953759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selection of High-Affinity RNA Aptamers That Distinguish between Doxycycline and Tetracycline.
    Tickner ZJ; Zhong G; Sheptack KR; Farzan M
    Biochemistry; 2020 Sep; 59(37):3473-3486. PubMed ID: 32857495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic ligands for PreQ
    Connelly CM; Numata T; Boer RE; Moon MH; Sinniah RS; Barchi JJ; Ferré-D'Amaré AR; Schneekloth JS
    Nat Commun; 2019 Apr; 10(1):1501. PubMed ID: 30940810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic insights into an engineered riboswitch: a switching element which confers riboswitch activity.
    Weigand JE; Schmidtke SR; Will TJ; Duchardt-Ferner E; Hammann C; Wöhnert J; Suess B
    Nucleic Acids Res; 2011 Apr; 39(8):3363-72. PubMed ID: 21149263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics simulation of the binding process of ligands to the add adenine riboswitch aptamer.
    Bao L; Wang J; Xiao Y
    Phys Rev E; 2019 Aug; 100(2-1):022412. PubMed ID: 31574664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A light-responsive RNA aptamer for an azobenzene derivative.
    Lotz TS; Halbritter T; Kaiser C; Rudolph MM; Kraus L; Groher F; Steinwand S; Wachtveitl J; Heckel A; Suess B
    Nucleic Acids Res; 2019 Feb; 47(4):2029-2040. PubMed ID: 30517682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Riboswitching with ciprofloxacin-development and characterization of a novel RNA regulator.
    Groher F; Bofill-Bosch C; Schneider C; Braun J; Jager S; Geißler K; Hamacher K; Suess B
    Nucleic Acids Res; 2018 Feb; 46(4):2121-2132. PubMed ID: 29346617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated physics-based design of synthetic riboswitches from diverse RNA aptamers.
    Espah Borujeni A; Mishler DM; Wang J; Huso W; Salis HM
    Nucleic Acids Res; 2016 Jan; 44(1):1-13. PubMed ID: 26621913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.